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THE ZEEMAN EFFECT
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INTRODUCTION    

It is well known that an atom can be characterized by a unique set of discrete energy
states.  When excited through heating or electron bombardment in a discharge tube, the
atom makes transitions between these quantized energy states and emits light.  The emitted
light forms a discrete spectrum, reflecting the quantized nature of the energy states or
energy levels.  In the presence of a magnetic field, these energy levels can shift.  This effect
is known as the Zeeman effect.  The origin of Zeeman effect is the following.  In an atomic
energy state, an electron orbits around the nucleus of the atom and has a magnetic dipole
moment associated with its angular momentum. In a magnetic field, it acquires an
additional energy just as a bar magnet does and consequently the original energy level is
shifted.  The energy shift may be positive, zero, or even negative, depending on the angle
between the electron magnetic dipole moment and the field.

Due to Zeeman effect, some degenerate energy levels will split into several non-
degenerate energy levels with different energies.  This allows for new transitions which can
be observed as new spectral lines in the atomic spectrum.  In this experiment we will study
Zeeman effect in neon and mercury for which the theory of Zeeman effect is somewhat
more tractable.

Non-relativistic quantum theory accounts for only one type of angular momentum
called orbital angular momentum.  The Hamiltonian for an electron with angular momentum

l
→

  has an additional term µBl
→

 ·H
→

  when a weak uniform magnetic field H
→

  is turned on.  µ B

is a constant called the Bohr magneton.  First order perturbation theory tells us that energy
levels are shifted by

∆E  =  µB Ml H [1]

where Ml is the quantum number for the component of l
→

  along the field.  If an atom had

only a single electron and the electron had only "orbital" angular momentum, then Eq. 1
would represent the Zeeman shift.
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But electrons also have a different type of angular momentum called intrinsic spin
angular momentum, s

→
 .  Spin emerges naturally only in relativistic quantum theories, but it

can be shown that inserting a term gsµBs
→

 ·H
→

 (where gs ≈ 2)  into the non-relativistic

Hamiltonian gives the correct behavior of spin in a weak field.  The first-order perturbation
theory gives a corresponding energy shift of

∆E  =  µB gs Ms H [2]

The shift is analogous to that due to orbital angular momentum, except for the constant
factor of gs.  The energy shift for a particular state depends only on Ms (Ml for the orbital

case) for that state.  If an atom had only a single electron and the electron had only
"intrinsic spin" angular momentum, then Eq. 2 would represent the Zeeman shift.

Atoms typically have many electrons and are characterized by a total angular

momentum J
→

  which is the sum of all spin and orbital angular momenta.  Though more
complicated now, the energy shift is usually expressed in a similar looking form to Eqs. 1
and 2.

∆E  =  µB g MJ H [3]

The important difference is that g depends on the particular state of interest, as does MJ.

By observing the spectra of neon and mercury we will be able to experimentally
determine the g-factors for certain states.  The values will be compared to the theoretical
(Landé) g-factors, derived in the following section

THEORY    

A. Atomic States in Zero Field

Each of the n electrons in an atom has orbital l
→

 i and spin s
→

 i angular momentum.

The sum of all these is the total angular momentum of the atom (ignoring the nucleus).

J
→

   ≡  L
→

   +  S
→

 [4]

L
→

   ≡ ∑
i=1

n

l
→

i [5]

S
→

   ≡  ∑
i=1

n

s
→

i [6]
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NOTE: The convention used here is that angular
momentum operators are dimensionless.

For example l
→

  ≡ r
→

 ×p
→ /h.

NOTE: Operators are shown in boldface.

NOTE: Gaussian units are used.

The atomic Hamiltonian in no field will be labeled H0 .  In the absence of external torques

on the atom, the total angular momentum J
→

  is conserved (i.e. J
→

  commutes with H0 ) and

energy eigenstates can be constructed which are also eigenstates of J
→

 2 and Jz, where the

direction chosen for the z-axis is arbitrary.  Each eigenstate can be labeled by quantum
numbers J and MJ, where

<JMJ| J
→

 2 |JMJ>  =  J(J+1)     and     <JMJ| Jz |JMJ>  =  MJ [7]

In principal there are terms in the Hamiltonian that represent interactions between
the individual angular momenta of the electrons.  As a result, the individual angular

momenta, as well as L
→

  and S
→

 , need not be conserved (i.e. need not commute with H0 ).

However, these interactions are small effects in many atoms.  We will employ the usual
approximation, called L-S coupling (or Russel-Saunders coupling), which assumes that the

individual orbital angular momenta couple to produce a net orbital angular momentum L
→

  
which has a constant magnitude, but non-constant direction.  Similarly the individual spins

form a net spin S
→

  which also has a constant magnitude.  (This approximation is found to
break down for large Z atoms.)  Within this approximation, each eigenstate can be
constructed with the form |JLSMJ> with energy E0(JLS) degenerate in MJ, where

<JLSMJ| L
→

 2 |JLSMJ>  =  L(L+1)     and     <JMJ| S
→

 2 |JMJ>  =  S(S+1) [8]

Note that these states are not eigenstates of S z or Lz.

B. Atomic States in Non-Zero Field  -  Zeeman Effect

Now we will outline how Eq. 3 for the Zeeman energy shift can be derived.  Within
the L-S coupling model, the atomic Hamiltonian in a weak, uniform magnetic field is

H  = H0  + µB(L
→

 +gsS
→

 )·H
→

     [9]

where µB is called the Bohr magneton.  It is usually most convenient to choose the z-axis

so that H
→

  = H ẑ  , and we will do so in the discussion that follows.  First order perturbation
theory gives energy shifts
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∆E(JLSMJ)  =  µB <JLSMJ| Lz+gsS z|JLSMJ> H [10]

If the new term in the Hamiltonian (Eq. 9) were simply proportional to Jz = Lz+S z rather
than  Lz+gsS z, then the energy shift would be simple and exactly analogous to Eq. 1.  That

is not the case however.  The matrix elements in Eq 10 cannot be easily evaluated in their
present form since the states are not eigenstates of Lz and S z.  However, it can be shown

that

<JLSMJ| L
→

 +gsS
→

  |JLSMJ>  =  <JLSMJ| g(JLS) J
→

  |JLSMJ> [11]

(using the Wigner-Eckart theorem for example), where g(JLS) is the Landé g-factor for a
(JLS) state.  With this simplification

∆E(JLSMJ)  =  µB g(JLS) <JLSMJ| Jz |JLSMJ> H  =  µ B g(JLS) MJ H [12]

As a result, each state has energy

E(JLSMJ)  =  E0(JLS) + µ B g(JLS) MJ H [13]

which has the form of Eq. 3.  The exact dependence of g on J, L, and S will be discussed
below in section III-D.

The effect of the Zeeman shifts can be seen experimentally.  If a particular transition
in the absence of an applied field produces radiation at frequency ν0, then the frequency in

the presence of a field will be given by

hν  =  hν0  +  µB g(JLS) MJ H -  µ B g(J'L'S') MJ' H [14]

The primed symbols refer to the lower state and the unprimed to the upper state.

C. Selection Rules

Conservation laws determine which transitions can occur ("allowed") and which
can't ("forbidden").  The allowed transitions are specified by a set of conditions called
selection rules.  The selection rules for these states are given below without derivation.

∆l  =  ±1 [15]
∆L  =  0, ±1 [16]
∆S  =  0 [17]
∆J  =  0, ±1 [18]
∆MJ  =  0, ±1 [19]
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NOTE: ∆MJ = ±1 transitions are called σ
transitions, while ∆MJ = 0 transitions are

called π transitions.

There are additional conditions as well:  (1) π transitions between levels both of which have
MJ = 0 are forbidden if the sum of the J values of upper and lower states is even and (2) J

= 0 to J = 0 transitions are forbidden.

It should be noted that the selection rules above only apply to a type of transition
called an electric-dipole transition, which is the dominant type.  Only "allowed" electric-
dipole transitions can occur.  However, transitions which are "forbidden" by the electric-
dipole selection rules may still take place as other types of transitions.  These events are
less common and we will ignore them here.

D. Landé g-factor

A simple argument can be given for the value of g(JLS).  Within the L-S coupling

approximation, L
→

  and S
→

  are assumed to be individually conserved in magnitude but not

direction.  Their components parallel to J
→

  must add to a constant value, but their

components perpendicular to J
→

  are constantly fluctuating.  This means that the only part of

L
→

  that contributes to the Zeeman effect is its component along J
→

 , namely

<L
→

·J
→

>

<J
→

2>
 J
→

      [20]

NOTE: <O> stands for <JLSMJ| O |JLSMJ>.

Similarly, the only part of S
→

  that contributes is

<S
→

·J
→

>

<J
→

2>
 J
→

      [21]

Then the energy shift, Eq. 10 can be replaced by

∆E  =  µB 
<L

→
·J

→
> + g0<S

→
·J

→
>

<J
→

2>
  MJ H [22]

Problem 1    Show that Eq. 22 implies that the Landé g-factor is

g(JLS)  =  
J(J+1)+L(L+1)-S(S+1)

2J(J+1)    +  gs 
J(J+1)+S(S+1)-L(L+1)

2J(J+1)   [23]
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In this experiment, certain transitions of neon and mercury atoms will be studied.
This section deals with the application of L-S coupling to the particular states involved.  All
of the spectral lines under consideration in this experiment correspond to allowed
transitions, as far as the selection rules are concerned.

E. States of Neon (Ne) and Mercury (Hg)

First consider neon.  The 10 electrons in a neutral neon atom have a ground-state
configuration 1S22S22P6.  The n = 1 and 2 shells are closed and as such the atom has S =
L = J = 0, making the ground state 1S0 in spectroscopic notation.

NOTE: For a given (JLS) state the notation is
2S+1XJ, where X=S means L=0, X=P

means L=1, X=D means L=2, etc.

The transitions to be studied in neon are between initial states with one electron excited to a
3P level and final states with one electron excited to a 3S level (not transitions to the ground
state).  These transitions are simple to study theoretically, because the neon atom can then
be treated as a pair of particles — a hole in the n = 2 shell and an electron in the n = 3 shell.
In this manner, all 9 unexcited electrons are treated as a single particle, a hole.  If we label
the excited electron as particle 1 and the hole as particle 2, the upper level for the transitions
(2P53P1) has l1 = 1, s1 = 1/2, l2 = 1, and s2 = 1/2.  The lower level for the transitions
(2P53S1) has l1 = 0, s1 = 1/2, l2 = 1, and s2 = 1/2.

Now consider mercury.  The electrons have a ground-state configuration
1S22S22P63S2 ... 6S2.  The transitions to be studied are between states with one excited
electron. The initial and final configurations are 6S17S1 and 6S16P1, respectively.  These
mercury transitions are similar to neon in that the angular momentum involves just two
particles.  If we label the excited electron as particle 1 and the other electron as particle 2,
the upper level for the transitions (6S17S1) has l1 = 0, s1 = 1/2, l2 = 0, and s2 = 1/2.  The
lower level for the transitions (6S16P1) has l1 = 1, s1 = 1/2, l2 = 0, and s2 = 1/2.

For these two-particle states the total orbital angular momentum (Eq. 5) is simply

L
→

   =  l
→

 1 + l
→

 2 [24]

This is an operator equation.  In terms of the eigenvalues it results in the triangle condition,

|l1 - l2|  ≤  L  ≤  l1 + l2 [25]
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Thus, for the neon 2P53P1 configuration, the possible values of L are 0, 1, and 2, resulting
in S, P, and D states.  The 2P53S1 configuration can only lead to a P state.  For mercury,
the 6S17S1 configuration leads to an S state, while 6S16P1 leads to a P state.

In L-S coupling, the total spin (Eq. 6) is

S
→

   =  s
→

 1 + s
→

 2 [26]

with triangle rule,

|s1 - s2|  ≤  S  ≤  s1 + s2 [27]

Therefore, all states under consideration have S = 0 or 1, giving rise to singlet and triplet
states.

Finally, L and S are coupled to J with a final triangle rule

|L - S|  ≤  J  ≤  L + S [28]

E. Transitions Studied in this Experiment

Problem  2    For the neon green line at 585 nm, where the upper state is 1S0 (S=0, L=0,
J=0) and the lower state is 1P1 (S=0, L=1, J=1), show that the frequency
of the ∆MJ = +1 transition is

ν0→1  =  ν0 - g(J'L'S') µ BHz/h [29]

while that of the ∆MJ = -1 transition is,

ν0→-1  =  ν0 + g(J'L'S') µ BHz/h [30]

Also, show that the ∆MJ = 0 frequency is unaffected by the magnetic field.

       

S0
1

P1
1

JM

'

0

JM

0

-1

+1

∆M = +1

∆M = -1
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Fig. 1  Zeeman splitting of the neon 585-nm line

Problem 3    For the neon red line at 603 nm, where the upper state is 3P1 (S=1, L=1,
J=1) and the lower state is 3P1 (S=1, L=1, J=1), show that the frequencies
of the ∆MJ = +1 transitions are

ν0→1  =  ν0 - g(J'L'S') µ BHz/h [31]

ν-1→0  =  ν0 - g(JLS) µ BHz/h [32]

while that of the ∆MJ = -1 transitions are

ν1→0  =  ν0 + g(JLS) µ BHz/h [33]

ν0→−1  =  ν0 + g(J'L'S') µ BHz/h [34]

The frequencies of the ∆MJ = 0 transitions are

ν1→1  =  ν0 + [g(JLS) - g(J'L'S')] µBHz/h [35]

ν-1→−1  =  ν0 - [g(JLS) - g(J'L'S')] µBHz/h [36]

The ν0→0 is absent since it is forbidden.

P3
1

JM

'

0

JM

0

-1

+1

∆M = +1

∆M = -1

P3
1

1

-1

Fig. 2  Zeeman splitting of the neon 603-nm line

Problem 4    Compute the predicted g-factors for all of the neon states analyzed above.

Problem 5    (OPTIONAL)  For the mercury green line at 546 nm, where the upper state
is 3S1 (L=0, S=1, J=1) and the lower state is 3P2, (L=1, S=1, J=2), show
that the possible ∆MJ = +1 transitions are
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ν1→2  =  ν0 - [2g(J'L'S') - g(JLS)] µBHz/h [37]

ν0→1  =  ν0 - g(J'L'S') µ BHz/h [38]

ν-1→0  =  ν0 - g(JLS) µ BHz/h [39]

while the ∆MJ = -1 transitions are

ν1→0  =  ν0 + g(JLS) µ BHz/h [40]

ν0→−1  =  ν0 + g(J'L'S') µ BHz/h [41]

ν-1→−2  =  ν0 + [2g(J'L'S') - g(JLS)] µBHz/h [42]

P3
2

JM

'

0

JM

1

0

2

∆M = +1

∆M = -1

S3
1

1

-1

-1

-2

Fig. 3  Zeeman splitting of the mercury 546-nm line

F. Polarization of the Emitted Light

When an atom undergoes a π transition (∆MJ = 0), its angular momentum about the

z-axis does not change.  The atom satisfies this requirement by having its optically active
electron oscillate along the z-axis, thereby giving rise to an electric field polarized in this
direction.

On the other hand, when the atom undergoes a σ transition (∆MJ = ±1), its optically

active electron performs a rotary motion in the x-y plane in order that the photon emitted
carry angular momentum about the z-axis.  The electric field then lies predominately in the
x-y plane.  Seen edge on, this constitutes a linear polarization perpendicular to the z-axis.

Using a linear polarizer then one can separate these two types of transitions.
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EXPERIMENT    

Observe the Zeeman effect in the two lines of neon analyzed above. Compare the g-
factors calculated from fringe matching with those predicted on the basis of L-S coupling.

Note that L-S coupling is an imperfect model for neon.  In particular, the g-factor of
the 3P1 state of neon is poorly predicted.  A better calculation by Shortley (Physical Review

47    , 295 (1935)) gives a value of 1.34.  However, the remaining neon states under
consideration have g-factors not very different from the Landé g-factors predicted by L-S
coupling.

Optional experiment:  get your TA or instructor to change the light source from
neon to mercury. DON'T ATTEMPT TO MAKE THIS CHANGE YOURSELF.  THE
LIGHT SOURCES ARE VERY DELICATE!  Then observe the green line in mercury.
Compare your g-factors with those predicted by L-S coupling.

A. Apparatus

The central analytical device in this experiment is an etalon, which is a slab of
quartz (thickness: d = 6.029 mm, index of refraction: n = 1.46) having the two opposing
sides accurately parallel.  On these sides is deposited a reflecting material.  The etalon is
housed in a stainless steel tube and should not be removed from it.  DO NOT TOUCH
THE REFLECTING SURFACES OF THE ETALON!

d

n

θ

lens

mirrors

(a) (b)

etalon

Fig. 4  (a) Light path through an etalon; (b) Fringe pattern.
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The etalon  (Fig. 4a) generates a series of circular interference fringes as shown in
Fig. 4b.  The location of these fringes is given by the condition

1  -  
sin2θ

n2    =  
mλ
2nd [43]

where d is the etalon thickness, λ is the wavelength in free space, n in the index of

refraction of the etalon and m is an integer called the "order of interference".  Eq. 43 can be
derived from the geometry shown in Fig. 4a.  Successive fringes differ in m by one, but
the center most fringe does not have an m of zero.  Setting θ equal to zero in Eq. 43 defines

the smallest value of m, which is generally a large number.

After the light leaves the etalon, it passes through a linear polarizer.  There are in
fact two linear polarizers, one above the other, so that the upper half of the field of view
has one polarization, the lower half the other.  One should arrange the polarizer orientation
so that the upper half of the field of view is polarized parallel to the z-axis, the lower half,
perpendicular to it.

For the neon green line at 585 nm, there will be one π transition which (according

to Eq. 3) will be unaffected by the magnetic field.  Thus in the upper half of the field of
view the fringe pattern will not change as the magnetic field is applied.  Also there are two
σ transitions, one of which, according to Eq. 29, decreases in frequency as the magnetic

field is increased.  The other, according to Eq. 30, increases in frequency.  Now a
transition that decreases in frequency must increase in wavelength, and as seen in Eq. 43
must increase in angle θ.  That is, it moves outward in the fringe pattern.  A transition that

increases in frequency moves inward in the fringe pattern.

Therefore, a single fringe of the neon green line must be unchanged in the upper
half of the field of view, but split in two in the lower half.  The right-hand part of the
fringe, where it crosses the horizontal axis, must look as shown in Fig. 5.

Fig. 5  Split fringe pattern.  The arrows indicate the direction the fringe
moves as the magnetic field increases.
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Problem 6    Sketch the fringe pattern that a single fringe breaks into for the neon 603 nm
line.  Optional: sketch the fringe pattern for the neon 640-nm line and for the
mercury 546 nm line.

Turning back to the neon green line, if one fringe component moves outward and
the other moves inward, there will be a field at which the outward moving component of
one fringe will exactly overlap the inward-moving fringe from the next order outwards.   It
is this magnetic field that is to be measured.

When an exact overlap occurs, there are two frequencies at the same angle θ, and

therefore using Eq. 43,

mλa  =  (m ± 1) λb [44]

where λa and λb are the wavelengths of the two fringes being overlapped.

Problem 7    Show that the frequency difference between the two green lines of neon
being overlapped is

∆ν  =  
c

2nd 
1

1-sin2θ
n2

           → 
θ<<1

     
c

2nd    [45]

and that the exact overlap that occurs with the neon green line gives

∆ν  =  2g(J'L'S')µ BHz/h  ≈  
c

2nd    [46]

Eq. 46 can be solved for g(J'L'S').  Once Hz has been measured, g(J'L'S') can be

calculated.

The neon line at 603 nm has g(J'L'S') almost equal to g(JLS), with g(J'L'S')
slightly larger.  Furthermore, the σ lines are not resolved due to the broadening caused by

the Doppler effect, coupled with the fact that the g-factors are almost equal.  However, a
matching of the σ lines of adjacent orders can be done as before:  the match occurs when

the overlapped line is the narrowest.  But in this case, the outermost line of one order is
matching the innermost line of the adjacent order.  Hence, the matching condition,
analogous to Eq. 46 is

∆ν  =  [g(JLS) + g(J'L'S')] 
µBH1

h    =  
c

2nd [47]

where H1 is the magnetic field at which the matching occurred.  This equation gives a

relation between g(JLS) and g(J'L'S').
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Another relation can be obtained by increasing the magnetic field until the π lines

match the σ lines as well as possible.  What this means is that each of the π lines matches

the average of the σ lines from the adjacent orders.  At this magnetic field H2, one has the

matching condition

[3g(J'L'S') - g(JLS)] 
µ0H2

h    =  
c
nd [48]

This equation, together with Eq. 47, allows one to solve for g(JLS) and g(J'L'S')
separately.

If the optional experiment with the mercury green line at 546 nm is being
performed, then consider the following:

The green line of mercury at 546 nm has fringes for the s transitions
that vary widely in intensity. Of the three outward-moving fringes, the
intensities are in the ratio 6:3:1 moving from the inside out.  That is, the
brightest fringes are associated with the ν1→2 and ν−1→ −2 transitions.

There are two very easily seen overlaps possible with this spectral
line.  The first is where the three fringes from one order exactly overlap the
three fringes from the adjacent order, giving a pattern of three very distinct
fringes with almost the same intensity.

Problem 8    Find the analog of Eq. 46 for this case.

The second overlap that is easy to recognize is when the two bright
fringes of one order (those of relative intensity 6 and 3) exactly
overlap the two bright fringes of the adjacent order.  Then the
overlapped fringes have relative intensity 9 while the left-over fringe
on each side has relative intensity 1 and is dim enough to hardly be
seen.  Thus the pattern that is observed is a bright pair of overlapped
fringes.

Problem 9    Find the analog of Eq. 46 for this case.

From the magnetic field values at which these two overlaps occur,
the values of g(JLS) and g(J'L'S') can be calculated.
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B. Apparatus Notes

Magnet and power supply
Bell gauss meter, model 4048
Etalon telescope
Neon lamp on mounting stand, with power supply and variac
Mercury 202 lamp and power supply

MAGNET POWER SUPPLY

The magnet power supply has no air interlock.  WHEN YOU TURN IT ON,
CHECK THAT THE BALL RISES IN THE PLASTIC CYLINDER ON THE FRONT OF
THE SUPPLY!  If it doesn't rise, turn off the unit and get help.

GAUSS METER

The gauss meter has a delicate Hall effect probe.  BE CAREFUL NOT TO
DAMAGE IT!  Read the meter's instructions to see how to calibrate it.  Place the probe in
the magnetic field close to the lamp, so as to minimize errors due to field inhomogeneities.

NEON LAMP

The power supply operates at very high voltages.  DON'T TAKE APART THE
SUPPLY OR THE LAMP HOLDER WITHOUT GETTING ASSISTANCE!

To light the lamp, turn the variac to zero, throw the switch on and turn up the variac
until the discharge starts.  One wants the spectral lines to not be power broadened, so one
should use as low a voltage as possible.  However, the magnetic field disturbs the plasma
in the lamp and often causes the lamp to go out as the field is increased.  The remedy is to
turn up the variac with the magnetic field on until the lamp lights.

ETALON TELESCOPE

Insert the appropriate filter in the holder.  DO NOT TOUCH THE GLASS OF THE
FILTER, BUT HOLD IT BY THE METAL PARTS ONLY!  The filter holder has been
adjusted to the optimum angle – do not change it without consulting your TA or instructor.
DO NOT DROP THE FILTER!
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Move the telescope from side to side to get the brightest pattern.  If it is not
vertically centered, push or pull the pin sticking out of the bottom of the telescope.  This
pin is attached to the etalon, and allows one to adjust its position without removing it from
the telescope.

Do not remove the etalon from the telescope without help.  DON'T TOUCH THE
MIRRORED SURFACES OF THE ETALON UNDER ANY CIRCUMSTANCES!
Under normal operation of the experiment, the etalon need not have any adjustment beyond
pushing or pulling the pin at the bottom.

If the fringe pattern is not horizontally centered, adjust the knurled screw at the far
end of the telescope.

Check that the polarizer is inserted with a horizontal arrow and a vertical down-
pointing arrow facing the viewer.  This causes the polarizer to deliver the linear
polarizations discussed above.

MERCURY 202 LAMP

If you plan to do the optional experiment, get the TA or instructor to change lamps
for you.  The Hg202 lamp is very fragile and cannot be replaced (the manufacturer is no
longer in business).  The lamp power supply should be operated as follows:

• Set the intensity control to 60.

• Position the probe of an oscilloscope close to the coil in the lamp holder.  Don't
connect the probe to anything – a pickup signal is desired.  Adjust the probe
position until an rf signal from the coil is observed.

• Adjust the position of the tuning plunger on the lamp holder until the rf signal
on the oscilloscope is maximized.

• Wait until the lamp lights.  This can take 1 to 5 minutes.  If the lamp does not
light within 5 minutes, get assistance from the TA, instructor, or John
McGrath.

• Adjust the tuning plunger for maximum brightness.

The Hg202 lamp is made of quartz, which is transparent in the ultraviolet, so
considerable ultraviolet radiation is emitted, since mercury has a strong line at 254 nm.
THIS RADIATION CAN DAMAGE YOUR EYES, SO NEVER LOOK AT THE LAMP
EXCEPT THROUGH A PIECE OF GLASS OR PLASTIC!  If you wear eyeglasses, these
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will give protection.  Likewise, the glass lens in the eyepiece of the etalon telescope will
also protect you.

The filters for this line are colored glass.  Use both greenish filters together.

magnet

atomic light source

narrow-band filter

etalon

objective lens

eyepiece lens

two polarizers at 90˚

Fig. 6   Top view of optical system.


