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Preface

Solid tumors frequently contain areas of oxygen deprivation (hypoxia) due to rapid

cell proliferation and/or vascular insufficiency. The presence of hypoxic domains

typically correlates with poor patient prognosis, due to the relative resistance of

hypoxic cells to conventional cancer therapies and effects of O2 availability on

disease progression. The response of malignant cells to hypoxia has been the focus

of intense research over the last decade. In this issue of Current Topics in Micro-
biology and Immunology, we present chapters describing the impact of hypoxia on

components of the tumor microenvironment (such as endothelial cells, inflamma-

tory cells, and tumor-associated fibroblasts), the expression of unique microRNAs,

tumor cell differentiation status, and metastasis. Each review chapter describes the

state of the field studying these topics and poses important questions for the future.

The overall goal is to depict tumor phenotypes and associated molecular pathways

to be exploited in the development of novel therapeutics to be used against a broad

spectrum of human cancers.

Summer 2010 Celeste Simon
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The HIF-2a-Driven Pseudo-Hypoxic Phenotype

in Tumor Aggressiveness, Differentiation,

and Vascularization
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Abstract Cellular adaptation to diminished tissue oxygen tensions, hypoxia, is

largely governed by the hypoxia inducible transcription factors, HIF-1 and HIF-2.

Tumor hypoxia and high HIF protein levels are frequently associated with aggres-

sive disease. In recent years, high tumor cell levels of HIF-2 and the oxygen

sensitive subunit HIF-2a have been associated with unfavorable disease and

shown to be highly expressed in tumor stem/initiating cells originating from

neuroblastoma and glioma, respectively. In these cells, HIF-2 is active under

nonhypoxic conditions as well, creating a pseudo-hypoxic phenotype with clear

influence on tumor behavior. Neuroblastoma tumor initiating cells are immature

with a neural crest-like phenotype and downregulation of HIF-2a in these cells
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results in neuronal sympathetic differentiation and the cells become phenotypically

similar to the bulk of neuroblastoma cells found in clinical specimens. Knockdown

of HIF-2a in neuroblastoma and glioma tumor stem/initiating cells leads to reduced

levels of VEGF and poorly vascularized, highly necrotic tumors. As high HIF-2a
expression further correlates with disseminated disease as demonstrated in neuro-

blastoma, glioma, and breast carcinoma, we propose that targeting HIF-2a and/or

the pseudo-hypoxic phenotype induced by HIF-2 under normoxic conditions has

great clinical potential.

1 Introduction

Mammalian cells, including tumor cells, require oxygen for maintenance of an

efficient energy supply and lack of oxygen eventually leads to cell death due to

impaired energy requiring processes. Cells can withstand fluctuations in oxygen

levels by adapting to a decrease in oxygen involving reduction of energy consump-

tion and increase in anaerobic metabolism. During the adaptation process, there is a

dramatic shift in the expression of genes regulating a number of cellular functions

including glucose transport and metabolism, angiogenesis, and cell survival. Cen-

tral to this phenotypic shift are the hypoxia inducible factors (HIFs), HIF-1, and

HIF-2. These factors are heterodimeric transcription factors composed of a unique

alpha subunit and a beta subunit (ARNT/HIF-1b) shared by all three HIFs. Classi-

cally, HIFs are regulated by degradation of the alpha subunit at high oxygen levels

and by stabilization at hypoxia (reviewed in Kaelin and Ratcliffe 2008). In the

dimeric, active state, HIF-1 and HIF-2 bind to hypoxia responsive elements (HREs)

located in genes regulated by hypoxia and HIFs. Although HIF-1 and HIF-2 seem to

activate hypoxia-responsive genes by similar means (Tian et al. 1997; Wiesener

et al. 1998), the HIF-a subunits work in a nonredundant manner and several

differences in gene regulation have been proposed, many of which emphasize the

predominant role of HIF-1 in regulating the transcriptional response to hypoxia

(Iyer et al. 1998; Ryan et al. 1998; Hu et al. 2003; Park et al. 2003; Sowter et al.

2003). As detailed below, HIF-2 is also crucial for the hypoxic response, and as

opposed to HIF-1 it is active at prolonged hypoxia as well (Holmquist-Mengelbier

et al. 2006). The less studied HIF-3 is present in several splice variants lacking the

C-terminal transactivation domain and is thought to negatively regulate HIF-1 and

HIF-2 by sequestering the HIF-1 and HIF-2 alpha subunits, thereby blocking their

binding to HREs (Makino et al. 2001; Maynard et al. 2007). Although the main

mode of HIF activation is via stabilization of the alpha subunits, HIF-2, as well as

HIF-1, can be stable and transcriptionally active at physiological or even higher

oxygen tensions, as will be the central theme in this review. We propose that this

phenomenon, at least regarding HIF-2, is largely linked to its role and regulation

during normal development.

The phenotypes obtained by elimination of eitherHif1a orEpas1/Hif2a clearly show
that both genes are needed for proper development and that they are nonredundant.

2 A. Pietras et al.



Importantly, and the reason for the focus on HIF-2a in this review, HIF-1a and

HIF-2a are differently regulated in tumors such as neuroblastoma, breast cancer,

nonsmall cell lung carcinoma (NSCLC), and glioma and seem to have different

impact on tumor behavior and patient outcome in these tumors (Holmquist-

Mengelbier et al. 2006; Helczynska et al. 2008; Heddleston et al. 2009; Kim

et al. 2009b; Li et al. 2009; Noguera et al. 2009).

2 Phenotypic Effects of HIF-2a Elimination

While elimination of Hif1a has profound and repeatable effects on embryonal

development, the effects of knocking out Hif2a have turned out to be much more

complex and dependent on the genetic background, as summarized below. Despite

displaying incompletely overlapping phenotypes, four different Hif2a knockout

mice have been instrumental in identifying putative roles for HIF2A during

normal development (Tian et al. 1998; Peng et al. 2000; Compernolle et al. 2002;

Scortegagna et al. 2003). While Hif1a�/� animals are dead within embryonic day

E11 with severe disorganization of vascular networks and gross neural tube defects,

the effects of eliminating Hif2a – at least during early development – appears less

general.

Hif2a expression during development is most abundant in vascular endothelial

cells and disrupted vascular development of specific (although distinct) organs has

been observed in various Hif2a�/� mice. Furthermore, whether or not attributable

to vascular system defects, some Hif2a�/� mice have succumbed to embryonic

death displaying hemorrhage. In particular, theHif2a�/�mice created by Peng et al.

showed varying degrees of vascular disorganization despite apparently normal blood

vessel formation, suggesting that HIF-2a is required for normal remodeling/matura-

tion postvasculogenesis (2000). Hif2a�/� mice in other studies, however, appeared

normal in vascular development (despite hemorrhage) or displayed only subtle

changes during late stages of pulmonary vascularization. In the Compernolle et al.

study, Hif2a knockout mice died neonatally due to respiratory distress syndrome,

apparently caused by impaired fetal lung maturation because of reduced VEGF

levels and insufficient surfactant production (2002).

Creating Hif2a�/� animals by hybrid mating allowed Scortegagna et al. (2003)

to study effects of Hif2a loss in the postnatal mouse. These mice suffered from

biochemical/metabolic abnormalities and multiple-organ pathology specifically in

sites of high-energy demand including the heart, liver, testis, and bone marrow,

indicating a syndrome related or similar to mitochondrial disease. Overall, adult

Hif2a�/� mice showed greater oxidative stress as well as reduced response to

oxidative stress, suggesting an important role for HIF-2a in ROS homeostasis.

The fact that Hif2a itself is regulated by ROS may indicate a role as a primary

sensor of oxidative stress. In support, ROS accumulation and improved response to

radiation therapy by HIF2A inhibition was recently described in human tumor cells

The HIF-2a-Driven Pseudo-Hypoxic Phenotype in Tumor Aggressiveness 3



(Bertout et al. 2009). These findings may implicate a role for HIF2A in radiation

and chemotherapy resistance in tumor and possibly normal stem cells.

In addition, Hif2a�/� mice display defects in hematopoietic development due to

greatly reduced EPO levels in the kidney (Scortegagna et al. 2003, 2005; Rankin

et al. 2007). Administration of exogenous EPO reverts this phenotype as well as

some of the other defects associated with Hif2a elimination (Scortegagna et al.

2005). Further supporting a role for HIF2A in EPO production, a gain-of-function

mutation in the HIF2A gene has been found associated with familial erythrocytosis

(Percy et al. 2008a, b).

3 HIF-2 During Normal Sympathetic Nervous System (SNS)

Development

In 1998, Steven McKnight and colleagues showed that Hif2a expression was

transient but prominent in developing sympathetic ganglia and paraganglia

(Organ of Zuckerkandl) (Tian et al. 1998). The latter organ is the main site of

catecholamine synthesis during development and is thus tyrosine hydroxylase (TH)

positive; it was later confirmed that HIF-2a is also expressed in developing human

fetal SNS (Nilsson et al. 2005) (Fig. 1). Supporting a direct role for Hif2a in

catecholamine production, the Hif2a deficient 129/SvJ mice contained substantially

reduced levels of catecholamines, displayed bradycardia, and died at mid-gestation

at a developmental stage corresponding to when Hif2a levels in the Organ of

Fig. 1 HIF-2a positive human paraganglia at fetal week 8.5. Paraganglia stained for tyrosine

hydroxylase (TH) and HIF-2a in nonconsecutive but adjacent sections (ethical approval LU 389-98,

Lund University, Sweden). Arrows indicate distinct nests of immature paraganglia cells positive

for both TH and HIF-2a. These structures have been further characterized in (Hoehner et al.

1996)

4 A. Pietras et al.



Zuckerkandl were the highest in heterozygous animals (Tian et al. 1998). Strik-

ingly, the mid-gestational death was rescued by feeding the mothers DOPS, a

substance that can directly convert into norepinephrine. Although a sympathetic

phenotype was less pronounced in other Hif2a�/� mice – particularly as a cause of

death – altered catecholamine content or DOPS-mediated rescue was recorded at

least to some degree in all other Hif2a knockout animals (Peng et al. 2000;

Compernolle et al. 2002; Scortegagna et al. 2003). These findings are consistent

with the reported role of Hif2a in activating transcription of the DDC and DBH

enzymes and thereby regulating catecholamine synthesis in fetal rat sympathoa-

drenal progenitor cells regardless of oxygen tension (Brown et al. 2009). In further

support of a role forHif2a in sympathetic development, mice lacking the HIF prolyl

hydroxylase PHD3 displayed an increased number (but reduced functionality) of

sympathetic cells in the adrenal medulla, carotid body, and the superior cervical

ganglia due to reduced apoptosis (Bishop et al. 2008). A reasonable assumption

based on the role of PHD3 in targeting HIFs for degradation is that HIF protein

levels in general would be higher in PHD3�/� animals, and in vitro studies have

suggested that PHD3 is more important in regulation of HIF-2a than HIF-1a
(Appelhoff et al. 2004; Henze et al. 2009). Indeed, the sympathetic phenotype of

Phd3�/� mice was intriguingly reverted by crossing animals with heterozygous

Hif2a+/� (but not Hif1a+/�) mice, again indicating that proper control of Hif2a
expression is crucial for normal SNS development (Bishop et al. 2008). This notion

is perhaps embodied by the link between high HIF-2a expression and immature,

aggressive phenotypes of the SNS malignancy neuroblastoma, as discussed below.

4 Hypoxia in Solid Tumors and Relation to Tumor

Aggressiveness

Direct measurements of oxygen tension in solid tumors and adjacent nonmalignant

tissue reveal that tumors, generally, are less well oxygenated and that large parts of

solid tumors are hypoxic (Höckel and Vaupel 2001). Although these hypoxic areas

are often necrotic, the general histological pattern is such that tumor cells survive

low oxygen tensions and can thus adapt to hypoxic conditions. In vitro studies

support this conclusion as tumor cells established as cell lines can survive for

several days at as low concentrations as 0.1% oxygen. Another interesting aspect

of tumor hypoxia is the well-documented association between oxygen shortage and

tumor aggressiveness (reviewed in Bertout et al. 2008). The mechanistic back-

ground is probably very complex, but involves cytotoxic resistance, insensitivity to

radiation, decreased DNA repair capacity, increased vascularization, and increased

metastatic potential (reviewed in Semenza 2003; Erler et al. 2006; Löfstedt et al.

2007) and as will be discussed in more detail below, dedifferentiation or loss of a

differentiated tumor phenotype. As adaptation to hypoxia in tumor cells is largely

mediated via stabilization and activation of HIF-1a and HIF-2a, high levels of HIF
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proteins have also been associated with disseminated disease and poor overall

survival. In tumor cell lines – with few exceptions – both HIF-1a and HIF-2a are

expressed and we recently postulated that HIF-1a is involved in adaptation to acute

and HIF-2a to prolonged hypoxia (Holmquist-Mengelbier et al. 2006; Helczynska

et al. 2008). For historical reasons, HIF-1a is the isoform that has been most

extensively studied in clinical tumor materials and frequently been correlated to

aggressive tumor disease, but in recent years high tumor levels of HIF-2a rather

than HIF-1a have been shown to associate with negative overall survival and

metastatic disease. In breast carcinoma for instance, earlier published data link

HIF-1a, while later reports link HIF-2a to unfavorable disease (Schindl et al. 2002;

Bos et al. 2003; Gruber et al. 2004; Dales et al. 2005; Generali et al. 2006;

Giatromanolaki et al. 2006; Kronblad et al. 2006; Helczynska et al. 2008). Whether

these contradicting observations reflect real differences in the tumor material

analyzed or can be attributed to methodological shortcomings is presently

unknown. Nevertheless, data from tumors of different derivations in which HIF-

2 appears to be important for clinical behavior are exemplified in the next para-

graph.

5 Differential Tumor HIF Expression in Relation to Patient

Outcome

5.1 Neuroblastoma

Neuroblastoma is a childhood tumor that arises in precursor cells or immature

neuroblasts of the SNS, which is derived from the neural crest. There is strong

positive correlation between tumor aggressiveness (clinical stage and overall out-

come) and immature phenotype (Fredlund et al. 2008). Although several cytogenetic

aberrations linked to poor neuroblastoma prognosis have been identified, amplifica-

tion of MYCN is the only aberration at the gene level that strongly associates with

advanced disease, which in turn associates with activated MYC signaling and an

immature phenotype (Fredlund et al. 2008). The fully disseminated disease, Stage 4,

is highly aggressive and the overall survival of children with this disease stage is less

than 40% (Matthay et al. 1999).

As stated above, HIF-2a is expressed during discrete periods of murine and

human SNS development and the fact that neuroblastoma is an SNS-derived tumor

appears to be important when the role(s) of HIFs in neuroblastoma is discussed.

Both HIF-1a and HIF-2a proteins are expressed and become stabilized at hypoxia

in neuroblastoma cell lines (Jögi et al. 2002). There is however a distinct difference

in stabilization kinetics suggesting that HIF-1 is responsible for the acute, and

HIF-2 for the prolonged response to hypoxia (Holmquist-Mengelbier et al. 2006).

HIF-2a is also less sensitive than HIF-1a to oxygen-dependent degradation, and

accumulates already at near-physiological oxygen tensions. Immunohistochemical
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analysis of HIF expression in neuroblastoma specimens reveals that both HIF-1a
and HIF-2a proteins, as expected, can be detected in tumor cell layers adjacent to

necrotic areas. While HIF-1a is mainly restricted to perinecrotic zones, HIF-

2a protein is also expressed at other locations, most notably in cells adjacent to

blood vessels. Presence of tumor cells staining intensely for HIF-2a, more so than

high number of HIF-2a+ cells correlates positively to distant metastasis and nega-

tive overall survival (Holmquist-Mengelbier et al. 2006; Noguera et al. 2009). In

contrast, HIF-1a protein expression did not correlate to aggressive disease or

negative outcome (Noguera et al. 2009). As will be discussed below, we postulated

that a fraction of the cells staining intensely for HIF-2a are the neuroblastoma

tumor initiating or stem cells, which could explain why the presence of such cells so

strongly associates with unfavorable disease (Pietras et al. 2008).

5.2 Breast Carcinoma

HIF-1a protein is not expressed in normal breast tissue or ductal hyperplastic

lesions, but is detected in ductal carcinoma in situ (DCIS) and invasive breast

cancers (Bos et al. 2001; Helczynska et al. 2003) In cell lines, both HIFs are

expressed and hypoxia-regulated. Similar to the situation in neuroblastoma, HIF-1a
is acutely and transiently upregulated, whereas HIF-2a protein is still present after

prolonged hypoxia and appears to mediate a sustained hypoxic response, including

expression of VEGF (Helczynska et al. 2008). Expression in tumors and association

of HIFs to breast cancer aggressiveness appear to be a complex issue. Early studies

on HIF-1a protein expression in various subgroups of breast cancers link high

levels of the protein to poor outcome, although several of these reports contradict

each other. In more recent studies, the overall relationship between HIF-1a protein

and breast cancer specific death is meager and HIF-1a associates positively rather

than negatively to favorable disease (Tan et al. 2007; Helczynska et al. 2008).

However, there are early reports correlating high HIF-1a protein expression with

shorter overall and disease-free survival time in patients with lymph node-positive

breast cancer, whereas this association was not significant in lymph-node negative

patients (Schindl et al. 2002; Kronblad et al. 2006). In contrast to these findings, two

reports show association between high HIF-1a protein expression and poor out-

come in node-negative but not in node-positive subgroups of patients (Bos et al.

2003; Generali et al. 2006). In addition, significant associations between HIF-1a
protein expression and outcome without subgroup divisions (Dales et al. 2005) and

unfavorable outcome in node-positive tumors, although restricted to T1/T2 tumors

(Gruber et al. 2004) have been published. There are several putative explanations as

to why these reports differ in predicting outcome and range from small or poorly

defined clinical material to technical explanations. Our own experience is that

commercial HIF antibodies vary in quality, also at the batch level, implicating

that immunohistochemical stainings have to be interpreted with some caution. In

summary, we conclude from published data that the prognostic impact of HIF-1a
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protein expression in breast cancer is at best restricted to subgroups of patients,

which in such cases need to be verified in large prospective studies. Most studies,

however, have common findings in that multi- and univariate analyses fail to reveal

HIF-1a protein level as an independent prognostic factor.

HIF-2a and its association with the outcome in breast cancer patients has been

far less studied, but published immunohistochemical data suggest that HIF-2a
correlates to high metastatic potential and is an independent prognostic factor

associated with breast cancer specific death (Helczynska et al. 2008). In two cohorts

of breast cancer patients, both HIF-1a and HIF-2a correlated to increased VEGF

expression, but only high HIF-2a protein exhibited significant correlation to

reduced recurrence-free and breast cancer-specific survival, and was an indepen-

dent prognostic factor. Importantly, high HIF-2a protein expression correlated

to the presence of distal metastasis but to no other clinical feature analyzed

(Helczynska et al. 2008). In another report, HIF-2a protein was analyzed in a small

subset of infiltrating ductal breast carcinomas, which showed a significant relation-

ship between high HIF-2a protein expression and increased vascular density as well

as secondary deposits to multiple axillary lymph nodes. Multivariate analysis revealed

HIF-2a as an independent factor relating to extensive nodalmetastasis (Giatromanolaki

et al. 2006).

5.3 Renal Cell Carcinoma

During normal kidney development, HIF-1a is expressed in most cell types

whereas HIF-2a is mainly found in renal interstitial fibroblast-like cells and endo-

thelial cells. In the fully developed normal kidney, HIF-1a expression is main-

tained, while HIF-2a expression disappears. The role of HIF-signaling during

development is largely unclear, but the cell type- and stage-specific expression

distribution of HIF-a subunits correlates with the expression of critical angiogenic

factors such as VEGF and endoglin (Freeburg and Abrahamson 2003; Bernhardt

et al. 2006). Conditional knockouts in renal proximal tubule cells of either HIF-1a
or HIF-b alone do not generate an abnormal phenotype whereas conditional knock-

out of pVHL results in HIF-dependent development of tubular and glomerular cysts

(Rankin et al. 2006).

Clear cell renal cell carcinoma (CCRCC) is characterized by extensive neovascu-

larization. This is generally explained by impaired HIF-a subunit degradation due to

mutation or hypermethylation of the VHL gene, found in approximately 60–70% of

all CCRCCs (Gnarra et al. 1994; Herman et al. 1994). At normoxia, pVHL constitutes

the recognition subunit of a larger E3 ubiquitin ligase complex that targets the HIF-a
subunits for proteasomal degradation (Kaelin 2002). Thus, in CCRCCs where pVHL

function has been lost the HIF-a subunits are constitutively expressed and a pseudo-

hypoxic phenotype, including increased vascularization, is present. Intriguingly,

there seems to be a bias towards HIF-2a expression as compared to HIF-1a expres-

sion in these VHL-deficient carcinoma cells (Maxwell et al. 1999; Krieg et al. 2000).
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The abundance of VHL-deficient RCC cell lines expressing HIF-2a but not HIF-1a
(Maxwell et al. 1999) is also interesting as this contrasts with normal renal epithe-

lial cells, where HIF-2a expression is absent during ischemia (Rosenberger et al.

2003). Furthermore, the HIF signaling pathways are activated early in the develop-

ment of neoplastic lesions in VHL disease, with the HIF-1a isoform being

expressed even in earliest foci while the HIF-2a protein is detected first in more

advanced lesions (Mandriota et al. 2002). In pVHL-defective CCRCC, HIF-1

positively regulates BNIP3, an autophagy marker, but has no profound effect on

cyclin D1, TGF-a, and VEGF expression, whereas HIF-2 negatively regulates

BNIP3 but promotes cyclin D1, TGF-a, and VEGF expression (Raval et al.

2005). Thus, these differences in regulation of autophagy vs. cell growth and

angiogenesis might be understood in the light of HIF-2a being expressed mainly

during late CCRCC progression and in more advanced lesions. siRNA-mediated

knockdown of HIF-2a represses tumor growth in pVHL-deficient CCRCC (Kondo

et al. 2003; Zimmer et al. 2004), and overexpression of HIF-2a in the VHL wild

type 786-O cells resulted in enhanced tumor formation (Raval et al. 2005). In

contrast, overexpression of HIF-1a in 786-O cells diminished tumor xenograft

growth (Raval et al. 2005). Finally, and in agreement with the HIF-1a overexpres-

sion xenograft data, HIF-1a has been reported in a clinical RCC material to be an

independent prognostic factor predicting favorable outcome (Lidgren et al. 2005).

5.4 Nonsmall Cell Lung Carcinoma

HIF protein expression is virtually absent in normal lung tissue at normoxia,

whereas both isoforms are accumulated during hypoxic conditions (Giatromanolaki

et al. 2001). In the corresponding normal lung tissue examined from lung cancer

patients, bronchial and alveolar epithelium adjacent to the tumor site show weak to

intense cytoplasmic staining of the HIF proteins, whereas all other lung tissue

components are negative for HIF expression (Giatromanolaki et al. 2001).

Intratumoral hypoxia in lung cancers correlates with decreased overall survival

(Swinson et al. 2003; Le et al. 2006). Both HIF-1a and HIF-2a are frequently

expressed in NSCLC, also during early progression of disease, but whereas HIF-2a
causes, or is a surrogate marker for poor clinical prognosis (Giatromanolaki et al.

2001), the role of HIF-1a in predicting outcome is debated. Some reports demonstrate

that HIF-1a expression has no impact on patient overall survival (Giatromanolaki

et al. 2001; Kim et al. 2005), but potentially contradicting data exist (Volm and

Koomagi 2000; Yohena et al. 2009).

In lung adenocarcinomas, mutations in KRAS are common and the presence of

KRAS mutations predicts poor outcome (Huncharek et al. 1999). Mice conditionally

expressing a nondegradable HIF-2a and mutated Kras (KrasG12D) in the lungs

display severed tumor burden and decreased survival, compared to mice expressing

KrasG12D only, suggesting that HIF-2a play a pivotal role in lung cancer pathogenesis

(Kim et al. 2009b). In agreement with a role for HIF-2a in NSCLC tumorigenesis, in
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a clinical material HIF-2a was an independent prognostic marker with high protein

expression correlating to poor outcome (Giatromanolaki et al. 2001).

5.5 Glioblastoma

Glioblastoma multiforme (GBM) is characterized by a rich vasculature network

(Hossman and Bloink 1981; Blasberg et al. 1983; Groothuis et al. 1983) and

intratumoral necrosis (Raza et al. 2002). Both HIF-1a and HIF-2a proteins are

expressed in human glioblastomas (Jensen 2006; Li et al. 2009) with HIF-1a expres-

sion being mostly concentrated in areas of necrosis and at the tumor margin (Zagzag

et al. 2000). Studies on a small set of brain tumors have suggested that HIF-1a protein

correlates positively to brain tumor grade and vascularity (Zagzag et al. 2000).

Based on published data, the role of HIF-2a in glioblastoma formation and

aggressiveness is not fully clear, as HIF-2a has been attributed a tumor-suppressor

role (Acker et al. 2005), as well as a marker for poor prognosis (Li et al. 2009).

Overexpression of HIF-2a protein in rat glioblastomas suppressed tumor growth

despite overall enhanced vascularization. This was in part explained by increased

tumor cell apoptosis, and knockdown of HIF-2a in hypoxic human glioblastoma

cells reduced the apoptotic rate of these cells (Acker et al. 2005). Recent work on

GBM has focused highly on the small fraction of tumor cells with stem cell

characteristics that are thought to initiate and maintain tumor growth (Hemmati

et al. 2003; Singh et al. 2003; Galli et al. 2004; Singh et al. 2004). Several markers

identifying a glioma stem cell population have been proposed, including CD133,

Nestin (Singh et al. 2003), and A2B5 (Ogden et al. 2008). HIF-2a was recently

shown to be expressed at high levels in CD133+ glioma stem cells grown in vitro
(McCord et al. 2009), and to co-localize with stem cell markers in tumor specimens

(Li et al. 2009), suggesting that HIF-2a is an independent marker for glioma stem

cells. Interestingly, HIF-2a is specifically expressed in brain tumor stem cells but

not in neural progenitor cells, in contrast to HIF-1a, which is expressed in both cell
types. As in neuroblastoma, a proportion of the HIF-2a positive cells are located

adjacent to blood vessels in the tumor specimens, indicating that HIF-2a is

expressed by a small but significant number of tumor cells, also in nonhypoxic

regions (Pietras et al. 2008, 2009; Li et al. 2009). Finally, analyzing gliomas at the

mRNA level, HIF2A, but not HIF1A expression, correlates with poor patient

survival (Li et al. 2009).

6 Hypoxia and Tumor Cell Differentiation

As mentioned above, hypoxia has profound effects on cellular phenotypes. One

aspect of adaptation to hypoxia, which is of particular importance in tumor cells, is

the effect on the tumor cell differentiation status and newly discovered links
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between HIF-2a expression and tumor initiating/stem cells. Initially described in

cultured neuroblastoma and breast cancer cells and in breast tumor specimens,

hypoxia can push tumor cells towards an immature stem cell-like phenotype (Jögi

et al. 2002; Helczynska et al. 2003). The phenomenon has also been observed in

glioma (Heddleston et al. 2009) recently suggesting that the dedifferentiating effect

of hypoxia could be general and not restricted to specific tumor forms. These

observations have potential direct clinical impact, since at least in neuroblastoma

and breast carcinoma, immature stages of differentiation correlate to aggressive

tumor behavior and unfavorable outcome. Thus, we have proposed that the hypoxia-

induced immature stem cell features work in concert with other hypoxia-driven

changes in establishing an aggressive tumor phenotype (Jögi et al. 2002; Helczynska

et al. 2003; Axelson et al. 2005).

7 HIF-2a and Tumor Initiating/Stem Cells

HIF-2a is expressed during discrete periods of murine SNS development as deter-

mined by in situ hybridization (Tian et al. 1998) and the expression is both strong

and selective as most other tissues either lack or only show week HIF-2a expression

(Jögi et al. 2002), suggesting that HIF-2a in the developing SNS is regulated at

the transcriptional level. By immunohistochemistry we could further demonstrate

HIF-2a protein in human SNS paraganglia at fetal week 8.5 (Nilsson et al. 2005),

which developmentally corresponds to mouse embryonal day E16, a time point

when mouse SNS paraganglia express HIF-2a as determined by in situ hybridiza-

tions (Tian et al. 1998; Jögi et al. 2002). Using the same immunohistochemical

protocol that detects HIF-2a in developing human paraganglia, staining of human

neuroblastoma specimens highlights small subsets of cells intensely expressing

HIF-2a protein, and the presence of such cells strongly correlates to disseminated

disease (high clinical stage) and tumor related death (Holmquist-Mengelbier et al.

2006). Further immunohistochemical characterization of these cells reveals that

they are frequently perivascularly located, lack the expression of SNS markers like

TH and NSE found in the bulk of neuroblastoma tumor cells, but express neural

crest and early SNS progenitor markers such as NOTCH-1, HES-1, Vimentin, and

HAND2 (Pietras et al. 2008). Histologically, these cells were classified as tumor

cells, although ambiguous cases exist. However, in most cases it could be excluded

that the HIF-2a+ cells were tumor-associated macrophages, reported to express

HIF-2a, and contributed to adverse outcome when present in breast cancer speci-

mens (Leek et al. 2002). To verify that the HIF-2a+ cells indeed were tumor cells

proper and not stromal cells, MYCN amplification was demonstrated by in situ

FISH in perivascularly located, strongly HIF-2a immunofluorescing cells in tumors

harboring an amplified MYCN gene. We hypothesized that these immature stem

cell-like HIF-2a+ cells could be neuroblastoma stem or tumor initiating cells (TICs)

(Pietras et al. 2008).
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Recently, David Kaplan’s laboratory isolated neuroblastoma cells from patient

bone marrows and showed that these cells grow and form neurospheres in neural

stem cell promoting medium (Hansford et al. 2007). These cells are highly tumori-

genic in an orthotopic xenograft mouse model (Hansford et al. 2007) and are by this

functional definition TICs. The neuroblastoma TICs virtually lack expression of

SNS markers but express neural crest markers including NOTCH1, HES1, ID2, and
VIM (Pietras et al. 2009). As the TICs also have high levels of HIF-2a at normoxic

conditions, they strongly share phenotypic characteristics with the earlier identified

HIF-2a+, SNS marker�, and neural crest marker+ cells in neuroblastoma specimens

(Pietras et al. 2008). The relation between isolated immature neuroblastoma bone

marrow TICs and the phenotypically similar cells in neuroblastoma specimens, and

that between immature stem cell-like cells in tumor specimens and the bulk of

neuroblastoma cells expressing SNS markers have not been established. However,

down-regulation of HIF-2a in the cultured neuroblastoma TICs by an shHIF2A
approach releases the tumor cells from a differentiation block resulting in expres-

sion of the early SNS markers ASCL1/HASH1, ISL1, and SCG10. When removed

from the stem cell-promoting medium and grown in vivo as subcutaneous tumors,

the shHIF-2a-transduced TICs develop into a more mature neuroblastoma pheno-

type with expression of classical SNS markers such as tyrosine hydroxylase and

chromogranin A, thus acquiring a phenotype similar to that of the bulk cells of

clinical neuroblastomas (Pietras et al. 2009). We conclude that HIF-2a keeps the

neuroblastoma TICs in a stem cell-like state and that these cells have properties in

keeping with what could be expected of a neuroblastoma stem cell. Our current

view of the relation between neuroblastoma TICs, circulating neuroblastoma cells,

tumor bulk, and HIF protein expression is summarized in Fig. 2. The phenotypic

similarities between bone marrow-derived TICs and the HIF-2a+ tumor cells

located adjacent to blood vessels in neuroblastoma specimens suggest that these

cells are related and we postulate that circulating neuroblastoma cells are the

connecting link as has been demonstrated in melanoma, breast, and colon tumor

model systems by Massague and co-workers (Kim et al. 2009a). In tumors, we

further postulate that the HIF-2aþ neuroblastoma stem cells will by unknown

mechanisms spontaneously differentiate bulk cells expressing SNS markers such

as CHGA, TH, and GAP-43. The bulk cells have reduced normoxic VEGF expres-

sion and thus reduced angiogenic capacity due to lowered HIF-2a protein levels and

when such cells experience hypoxia, they dedifferentiate and acquire stem cell

neural crest-like features (Jögi et al. 2002).

As briefly touched upon above, there is also experimental support from other cell

systems for the role of HIF-2a during early development and maintenance of a

(tumor) stem cell phenotype (reviewed in Keith and Simon 2007). In embryoid

bodies, overexpression of HIF-2a results in maintained pluripotency and potentia-

tion of tumorigenic growth (Covello et al. 2006). These effects were a result of

direct transcriptional activation of the POU transcription factor OCT4 by HIF-2a,
as silencing of OCT4 in HIF-2a knock-in cells reverted the stem cell phenotype

and reduced tumor growth (Covello et al. 2006). In glioma, cell populations

enriched for tumor stem cell properties have high HIF-2a protein levels and as in
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neuroblastoma, HIF-2a has been suggested to be a marker of glioma stem cells. In

addition, downregulation of HIF-2a in such cells results in decreased tumor initiat-

ing capacity and glial differentiation (Li et al. 2009; Heddleston et al. 2009). In line

with these findings are the observations that HIF-2a protein expression correlates to

breast cancer specific death and distant metastasis – the latter process most likely

dependent on the presence of cells with tumor stem cell properties. Based on the

published observations that HIF-2a is intimately and functionally linked to imma-

ture neural tumor stem cell phenotypes and appears to counteract early steps in SNS

and glial differentiation, we hypothesize that HIF-2a might be a general marker of

tumor stem cells with a dedifferentiating function similar to that in glioma and

neuroblastoma stem/TICs.

8 HIFs and Vascularization

HIFs were implicated early in the tumor angiogenic process when it became clear

that hypoxia promotes VEGF expression (Shweiki et al. 1992; Forsythe et al. 1996).

With neuroblastoma as a model system we showed that there is a temporal shift in

the usage of the HIFs during hypoxia-driven VEGF expression; whereas the VEGF

expression is HIF-1 dependent at an acute phase, the expression during prolonged

hypoxia is primarily HIF-2 driven (Holmquist-Mengelbier et al. 2006). In a follow-up

Fig. 2 A putative interplay between neuroblastoma (NB) tumor-initiating cells (TICs), tumor bulk,
HIF-2a, sympathetic nervous system (SNS) differentiation, and oxygen status. We postulate that

bone marrow-derived neuroblastoma TICs communicate with primary neuroblastomas as circulat-

ing tumor cells. In neuroblastoma tumors, TICs will by unknown mechanisms, spontaneously lose

their HIF-2a protein expression, differentiate, and acquire expression of SNS markers. In hypoxic

regions of neuroblastomas, tumor cells lose their differentiated phenotype and become stem cell-

like (Jögi et al. 2002). In this model, HIF-1a protein expression is strictly linked to a hypoxic

cellular environment
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study using large clinical neuroblastoma tissue microarray material immunohisto-

chemically stained for HIF-1a, HIF-2a, VEGF, and blood vessel endothelial cells

(CD31), tumor cells staining intensely for HIFs correlated to VEGF positivity,

while the HIF-1a and HIF-2a staining did not fully correlate to each other (Noguera

et al. 2009). Furthermore, HIF-1a and VEGF, but not HIF-2a, showed negative

correlation to the number of blood vessels, in agreement with the observation that

strongly HIF-2a positive tumor cells express VEGF and frequently locate adjacent

to blood vessels. As opposed to HIF-2a, presence of HIF-1a positive cells did not

correlate to tumor aggressiveness or disseminated disease (Noguera et al. 2009).

We conclude from in vitro and in vivo neuroblastoma data that both HIF-1a and

HIF-2a become stabilized at hypoxia and that the HIF-2a protein level can be

positively regulated by additional, not fully explored mechanisms.

The HIF-2a+ neuroblastoma and glioma stem/TICs strongly express VEGF

(Holmquist-Mengelbier et al. 2006; Bao et al. 2006; Calabrese et al. 2007; Pietras

et al. 2008, 2009; Li et al. 2009) and the perivascular location of phenotypically

similar cells in tumor specimens might implicate that tumor stem cells actively take

part in the process of tumor vascularization. The hypothesis is supported by the

observation that knockdown of HIF-2a in neuroblastoma and glioma stem/TICs

results in poorly vascularized tumors. Moreover, vascularization is affected in mice

with eliminated Hif2a (Peng et al. 2000; Rankin et al. 2008) and overexpression of

Hif2a in embryoid bodies results in early and extensive formation of a vascular

network (Covello et al. 2006). The underlying molecular mechanisms behind the

perivascular localization of neural tumor stem cells are presently not understood

and are topics for future investigations.

9 HIF-2a and the Pseudo-Hypoxic Phenotype: Targets for

Tumor Treatment

One striking feature of both neuroblastoma and glioma stem/TICs is their pseudo-

hypoxic phenotype due to high expression of active HIF-2a at physiological oxygen

tensions (Holmquist-Mengelbier et al. 2006; Pietras et al. 2008, 2009; Li et al.

2009). As a consequence, several genes considered to be hypoxia-regulated are

highly expressed at nonhypoxic conditions in these HIF-2a+ tumor cells, thus

creating a pseudo-hypoxic phenotype, presumably similar to that in a majority of

CCRCCs. Whether the pseudo-hypoxic phenotype is drastically different from a

corresponding bona fide hypoxic phenotype is not known, but as discussed above,

VEGF expression and presumably vascularization would be one important deter-

minant of the high HIF-2a expression at nonhypoxic conditions. This conclusion, in

addition to data indicating that HIF-2 appears to play a pivotal role in aggressive

and disseminated growth of neuroblastoma, glioma, breast carcinoma, nonsmall

cell lung carcinoma, and CCRCC, strongly suggests HIF-2a and the pseudo-

hypoxic phenotype are attractive therapeutic targets in at least these tumor types.
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By pushing HIF-2a+ tumor stem cells toward a more mature tumor bulk-like

phenotype by interfering with the expression or activity of HIF-2, the tumor stem

cell pool as well as the bulk of tumor cells, targeted by existing, efficient treatment

protocols, would be reduced in numbers. The demonstration that both neuroblas-

toma and glioma stem/initiating cells differentiate in vivo when HIF-2a is knocked

down (Pietras et al. 2009; Heddleston et al. 2009; Li et al. 2009) can be seen as

proof of principle. Diminished HIF-2a activity also leads to reduced VEGF expres-

sion in these two tumor stem cell models, and as would be anticipated, neuroblas-

toma and glioma tumors with reduced HIF-2a expression are highly necrotic

(Pietras et al. 2009; Li et al. 2009; Heddleston et al. 2009) suggesting that targeting

HIF-2a will result in both an antiangiogenic effect and a reduction of the tumor

stem cell pool. As high HIF-2a protein levels associate with disseminated disease,

targeting of HIF-2a or the HIF-2a-driven pseudo-hypoxic phenotype, might also

affect tumor spread and transition into advanced clinical stages.
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in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose

deficiency, and hypoxia. Exp Cell Res 303:447–456

Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, Påhlman S (2009) HIF-1
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Abstract Hypoxia promotes tumor progression through multiple mechanisms

including modifying angiogenesis, metabolism switch and invasion. Hypoxia

inducible factors (HIFs), particularly HIF1a and HIF2a, are key mediators in

cancer hypoxia response and high expression levels of HIFs correlate with a poor

prognosis in various tumor types. Cancer stem cells (CSCs), also known as cancer

initiating cells or tumor propagation cells, are neoplastic cells that could self-

renewal, differentiate as well as initiate tumor growth in vivo. Cancer stem cells

are believed to be the key drivers in tumor growth and therapy resistance. Hypoxia

has been shown to help maintain multiple normal stem cell population but its roles

in cancer stem cells were largely unknown. Our group and other researchers

recently identified that hypoxia is also a critical microenvironmental factor in

regulating cancer stem cells’ self-renewal, partially by enhancing the activity of

stem cell factors like Oct4, c-Myc and Nanog. The effects of hypoxia on cancer

stem cells seem to be primarily mediated by HIFs, particularly HIF2a. HIF2a is

highly expressed in cancer stem cells in gliomas and neuroblastomas and loss of
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HIF2a leads to significant decrease in cancer stem cell proliferation and self-

renewal. These findings illustrated a new mechanism through which oxygen tension

and microenvironment influences cancer development. Targeting hypoxia niches

may therefore improve therapy efficacy by eliminating cancer stem cell population.

1 Hypoxia in Tumor Progression

Hypoxia, defined as reduced oxygen tension, is a common physiological phenome-

non in both normal embryonic development and malignancy progression (Harris

2002; Bertout et al. 2008). Although severe hypoxia is generally toxic for both

normal tissue and tumors, neoplastic cells gradually adapt to prolonged hypoxia

though additional genetic and genomic changes with a net result that hypoxia

promotes tumor progression and therapeutic resistance. Markers of hypoxia informs

poor prognosis in numerous tumor types (Harris 2002; Kaur et al. 2005; Pouyssegur

et al. 2006; Bertout et al. 2008). Using electrodes to measure the oxygen tension

within solid tumors, Vaupel and colleagues reported that low oxygen levels were

associated with increased tumor growth and risk of metastasis with greater risk of

adverse outcomes in patients suffering from head and neck, cervical and breast

cancers (Hockel and Vaupel 2001; Vaupel and Mayer 2007). Hypoxia has been

extensively studied in other cancers including brain tumors. In glioblastoma multi-

forme, necrosis, a well known consequence of prolonged hypoxia, is one of the

hallmarks of this highly lethal disease.

Hypoxia promotes cancer progression by regulating various aspects of cancer

biology, including radiotherapy resistance, metabolism, angiogenesis and invasion/

migration (Harris 2002). A major focus of hypoxia research in early era was its role

in radiotherapy responses. As early as 1909, Schwarz and colleagues already noted

that hypoxic cells were more resistant to ionic radiation than those irradiated in the

presence of O2 (Schwarz 1909). Hypoxia also significantly influences many other

crucial steps in cancer progression. Under hypoxia conditions, cells switch their

glucose metabolism from the aerobic tricarboxylic acid (TCA) cycle to anaerobic

glycolysis. Glycolysis fuels tumor cell growth because glycolytic pathway provide

the precursors for synthesis of nucleotides and phospholipids, both of which are

essential for rapid cell growth (Bertout et al. 2008). In fact, cancer cells display a

preference for glycolytic metabolism even in the presence of oxygen, a phenome-

non commonly known as Warburg effect (Warburg 1956). Another well character-

ized biological consequence of tumor hypoxia is elevated angiogenesis. Upon low

oxygen stimulation, tumor cells stimulate endothelial cell proliferation/migration

and new blood vessel growth by secreting remarkable level of many pro-angiogenic

growth factors, such as vascular endothelial growth factor (VEGF), platelet derived

growth factor (PDGF), etc. In addition, hypoxia may also change the level of cell

adhesion molecules and proteinases (like matrix metalloproteinases) to facilitate

cancer invasion and migration (Harris 2002). Thus, hypoxia has broad influence on

tumor biology and its new roles in the malignant progression are still under active

investigation.
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2 Hypoxia Inducible Factors and Tumor Progression

Cellular responses to oxygen tension are complicated processes that involve large

molecular networks, including the hypoxia inducible factors (HIFs). The HIFs,

heterodimer molecules consisting of an alpha subunit and a beta subunit, which are

believed to exert pivotal roles in hypoxic responses (Kaur et al. 2005). HIFa protein

levels are tightly regulated by oxygen while HIFb is constitutively expressed in

most cell types regardless of oxygen level (Jaakkola et al. 2001). Under “normoxia”

(often mistakenly considered ambient oxygen levels, whereas physiologic oxygen

levels are often 0.5–7%), HIFa is hydroxylated by PHD domain containing

proteins, ubiquitinated by E3 ligase von Hippel-Lindau (VHL) and then degraded

by then proteasome (Maxwell et al. 1999; Ivan et al. 2001; Jaakkola et al. 2001). In

humans and mice, there are at least three HIFa subunits – HIF1a, HIF2a and

HIF3a. HIF1a and HIF2a usually function as transcriptional activators with

hundreds of downstream targets identified as regulated by HIF1a and/or HIF2a
(Wang et al. 2005; Carroll and Ashcroft 2006; Pouyssegur et al. 2006; Bertout et al.

2008). HIF3a shares a DNA binding domain with HIF1a and HIF2a but lacks the

transcription activation domain. Therefore, HIF3a is considered to largely serve a

dominant negative role in hypoxia response by preventing the binding of HIF1a
and/or HIF2a to their target promoters (Makino et al. 2001).

While HIF1a and HIF2a share significant homology, most studies have been

focused on HIF1a largely due to its earlier discovery and more universal expression

pattern in tissues thanHIF2a (Ema et al. 1997). HIF1a functions as an oncogene (with
notable exceptions) inmany types of solid tumors, including those in breast, colon and

brain. HIF1a promotes tumor angiogenesis, proliferation, glycolysis, and metastasis

(Bertout et al. 2008; Yang et al. 2008). HIF1a protein levels are informative negative

prognostic factors for many cancers and high levels of HIF1a correlate with worse

patient outcome (Vaupel andMayer 2007; Hoffmann et al. 2008). In contrast, the role

of HIF2a in tumorigenesis has been less studied and poorly defined. Earlier data

supported HIF2a as a tumor suppressor in neuroblastoma despite the promotion of

angiogenesis (Acker et al. 2005); however, recent research using a von Hippel-Lindau

(VHL)-deficient renal cancermodel suggests thatHIF2a promotes tumor proliferation

and radiation resistance (Gordan et al. 2007; Bertout et al. 2009). Moreover, like

HIF1a, high HIF2a expression correlates with worse prognosis in multiple cancer

types including nonsmall cell lung cancer, breast cancer and hepatocellular carcino-

mas (Giatromanolaki et al. 2001; Bangoura et al. 2007; Helczynska et al. 2008).

Therefore, HIF2a may function as an oncogene in certain contexts.

3 Hypoxia in Stem Cell and Cancer Stem Cell Maintenance

Two features of stem cells are self-renewal and differentiation. Normal stem cells

use these two properties to sustain the tissue organization and hierarchy. Although

tumors were traditionally thought to be highly disorganized, increasing evidence
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has accumulated that cellular hierarchies exist in many tumor types (Reya et al.

2001). Cancer stem cells, also known as cancer initiating cells or tumor propagation

cells, are cellular subpopulations in cancers that share many characteristics with

normal somatic stem/progenitor cells such as self-renewal capability, expression of

stem cell markers, and multilineage differentiation (Reya et al. 2001; Bao et al.

2006a, b). The existence of cancer stem cells was first demonstrated in leukemia

(Bonnet and Dick 1997); since then similar populations have been prospectively

identified in multiple solid tumor types including breast cancer, brain tumors,

and colon cancers (Al-Hajj et al. 2003; Singh et al. 2003; O’Brien et al. 2007).

While the detailed mechanisms by which cancer stem cells promote tumorigenesis

remain to be elucidated, our lab has shown that glioma stem cell can promote tumor

angiogenesis and therapy resistance (Bao et al. 2006a, b).

Stem cells are maintained in special microenvironments termed niches (Zhang

and Li 2008). The functional components of a stem cell niche are still under

investigation but vasculature and endothelial cells seem to be critical for the

maintenance of stem cells in adipose tissue, the nervous system, bone marrow

and testes (Yoshida et al. 2007; Kiel and Morrison 2008; Tang et al. 2008; Tavazoie

et al. 2008). Like their normal counterparts, cancer stem cells are also believed to

rely on their own niches to sustain the population (Gilbertson and Rich 2007). It has

been suggested that disruption of tumor microenvironment may serve as a critical

therapeutic paradigm to kill tumor cells. Therefore, how cancer stem cells are

maintained in vivo and how to destroy cancer stem cell niches are important

questions for both basic research and drug development.

Oxygen tension is an important component of tissue microenvironment and local

oxygen concentrations can directly influence stem cell self-renewal and differenti-

ation. In vitro evidence indicates that hypoxia promotes an undifferentiated status.

Low oxygen maintains embryonic stem cells and significantly blocks spontaneous

cell differentiation (Ezashi et al. 2005). Culturing human hematopoietic stem cells

(HSCs) under hypoxic conditions promotes their ability to repopulate when they are

transplanted into nonobese diabetic (NOD)/severe combined immunodeficiency

(SCID) mice (Danet et al. 2003). In fact, the bone marrow, where HSCs usually

locate, is generally hypoxic (Chow et al. 2001). Hypoxia also regulates neural stem

cells (NSCs) as low oxygen promotes the proliferation and survival of NSCs.

Hypoxia alters the differentiation program of NSC to favor the generation of

dopaminergic neurons (Studer et al. 2000). Why hypoxia stimulates the mainte-

nance of stem cells is largely unknown but one attractive hypothesis is that stem

cells are located in low oxygen environment to reduce the DNA damage resulting

from reactive oxygen species (ROS). Recent reports have also identified a few

molecular mechanisms by which hypoxia and HIFs directly modify stem cell

function. For instance, Notch signaling is essential in hypoxia-mediated differenti-

ation blockade in myogenic satellite cells and primary NSCs (Gustafsson et al.

2005). Simon and colleagues reported that HIF2a but not HIF1a up-regulates the

expression of Oct4 and enhances the activity of c-myc (Covello et al. 2006; Gordan

et al. 2007). As both Oct4 and c-myc are factors modulating stem cell self-renewal,

these data shed light on how hypoxia helps maintain stem cells. Consistent with
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these findings, hypoxia augments the efficiency of forming induced pluripotent

stem cells (iPSCs) (Yoshida et al. 2009).

Interestingly, hypoxia also directly regulates cancer stem cells and affects cancer

progression. Hypoxia promotes an immature phenotype in solid tumors including

human neuroblastoma and breast cancer cells (Axelson et al. 2005). Recently, our

lab and others demonstrates that hypoxia directly helps maintain the cancer stem

cell populations in brain tumors. We found that hypoxia promotes the self-renewal

capability of glioma stem cells. Cancer stem cells cultured in �2% oxygen concen-

tration display less spontaneous differentiation than those in 21% oxygen. Low

oxygen tension may convert nonstem cancer cells into cancer stem cell-like status

with increased self-renewal capacity as well as induction of essential stem cell

factors, such as Oct4, Nanog, and c-Myc (Heddleston et al. 2009). Similarly,

hypoxia promotes expansion of the glioma stem cells by enhancing their self-

renewal while inhibiting differentiation (Soeda et al. 2009). In addition, colon

cancer stem cells also preferentially locate in hypoxia niches (Zhang et al. 2008).

We found that HIF1a is expressed in both cancer stem cell and nonstem cancer cells

upon induction of hypoxia. In contrast, HIF2a is only highly induced in cancer stem

cell populations. Both HIF1a and HIF2a are critical for cancer stem cell mainte-

nance, as knockdown of either HIF1a or HIF2a in cancer stem cells leads to

reduced self-renewal capacity, increased apoptosis and attenuated tumorigenesis

(Li et al. 2009). Park and colleagues showed that HIF1a knockdown disrupted the

effects of hypoxia on enhancing the in vitro self-renewal of glioma cancer stem

cells and the inhibition of differentiation (Soeda et al. 2009). The unique expression

pattern of HIF2a in cancer stem cells made us hypothesize that it plays central roles

in cancer stem cell maintenance. Indeed, overexpression of nondegradable HIF2a
protein in nonstem cancer cells, which normally do not express HIF2a protein,

promotes a cancer stem cell-like phenotype and significantly increased their tumor-

igenic potential (Heddleston et al. 2009). In agreement with our data, Pahlman and

colleagues recently reported that HIF2a maintains an undifferentiated state of

neuroblastoma tumor initiating cells. Knockdown of HIF2a in neuroblastoma

samples impaired tumorigenesis and led to a more differentiated and less aggressive

tumor phenotype (Pietras et al. 2009). Interestingly, HIF2a is not expressed in

normal NSCs (Li et al. 2009), making it a very attractive target for drug develop-

ment. The relative importance of HIF1a and HIF2a in cancer stem cell maintenance

remains unclear.

4 Hypoxia Niche Versus Vascular Niche: Three

Different Models

Increasing evidence demonstrates that vasculature is a functional component of

niches for both normal stem cell and cancer stem cells. Endothelial cells promote

NSC self-renewal and maintenance (Shen et al. 2008). Adipocyte progenitors and
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undifferentiated spermatogonia are also shown to preferentially locate adjacent to

blood vessels (Yoshida et al. 2007; Tang et al. 2008). Interestingly, this dependence

on vascular structure based niche seems to be preserved in cancer development.

Cancer stem cells from several types of brain tumors (medulloblastoma, ependy-

moma, oligodendroglioma and glioblastoma) seem to be associated with blood

vessels and disturbing this vascular niche significantly inhibits the self-renewal of

cancer stem cells in vitro and their tumorigenesis capability in vivo (Calabrese et al.
2007; Gilbertson and Rich 2007). Recently, our lab and others have begun to

uncover the important role of hypoxia and hypoxia inducible factor in maintaining

cancer stem cells (Li et al. 2009). At first glance, it seems challenging to consolidate

these two facts that both blood vessels and hypoxic environment/pathways maintain

cancer stem cells. There are at least three reasonable hypotheses for this dilemma.

The first and easiest explanation would be there are actually two distinct niches

for cancer stem cells: a vascular niche and a hypoxic niche. It has been shown that

there are actually two distinct niches for hematopoietic stem cells in bone marrow:

an “osteoblastic” niche and a “vascular” niche (Kiel and Morrison 2008). It has also

been proposed that HSC populations maintained by these two niches are different.

The “osteoblastic” niche support long-term HSC maintenance and the “vascular”

niche stimulates short-term HSC proliferation and balances multiple-lineage fate

specification (Perry and Li 2007). It will be interesting to investigate whether it

is true in the cancer stem cell scenario. Several related questions remain open:

whether there are distinct cancer stem cell populations in a given tumor? Whether

different cancer stem cell populations preferentially rely on one niche over the

other?

Secondly, it is possible that the vascular and hypoxic niches are integrated.

While common sense assumes that regions adjacent to blood vessels are generally

not hypoxic, it is more complicated in tumors. Dewhirst and colleagues have shown

that tumor-associated blood vessels can also be hypoxic as a result of many factors

such as insufficient arteriolar supply, dysregulated microvessels and extreme fluc-

tuation of red blood cell flux, etc. (Kimura et al. 1996). Therefore, it is plausible to

hypothesize that cancer stem cells may choose to locate close to hypoxic blood

vessels where they could remain under low oxygen tension to reduce ROS-induced

cell stress and damage while at the same time, receive growth factors from

vasculature (e.g., endothelial cells and/or pericytes) to maintain their undifferenti-

ated status. To prove this hypothesis will require technical advances, including

sensitive methods to mark hypoxic gradients in tumors and robust markers for

cancer stem cells.

Third, it is possible that HIFs maintain cancer stem cells in normoxia conditions.

As suggested by their name, HIF1a and HIF2a are usually induced by low oxygen

tension. However, HIFs, particularly HIF2a can be activated even in the absence of

hypoxia (Holmquist-Mengelbier et al. 2006; Li et al. 2009). In vivo hypoxia is

generally defined as oxygen levels below 1%, in which both HIF1a and HIF2a
proteins are stabilized. However, our group and others have demonstrated that

HIF2a but not HIF1a accumulate even when oxygen concentrations are up to

5%. Because 5% oxygen is generally considered as “physiological normoxia”
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in vivo, it suggests that unlike HIF1a, HIF2a functional in the tissues under

nonhypoxic conditions. HIF2a may then help maintain cancer stem cells even if

they locate in well-oxygenated regions (e.g., adjacent to functional blood vessels).

How HIF2a is induced under normoxia is poorly understood but it has been shown

that oncogenes such as mitogen-activated protein kinase (MAPK) family members

activate HIF2a by protein phosphorylation (Conrad et al. 1999). If oncogenes

turn on HIF2a in cancer stem cells, HIF2a could in turn stimulate the secretion

of pro-angiogenic factors such as VEGF and therefore induce new blood vessel

growth. As a result, cancer stem cells create their own vascular niche but remain

dependent on the niche (Gilbertson and Rich 2007). As long as the oxygen level

is below 5% in cells with oncogenic growth factor pathway activation, HIF2a
expression may be maintained and contribute to cancer stem cell growth.

5 Conclusion

The identification of cancer stem cells significantly nuances our views on cancer

development and progression. Given the strong capability of cancer stem cell

to initiate tumorigenesis and promote therapeutic resistance, it is critical for

researchers to identify how this population is maintained in vivo. Cancer stem

cells and normal stem cells share many properties, including the requirement of

specific niches for their function. Disturbance of the stem cell/cancer stem cell

niche could lead to their differentiation and loss of stemness characteristics (Gil-

bertson and Rich 2007). In cancer stem cell scenario, this could lead to decreased

tumor growth and improved response to therapy. Many signaling molecules that

mediate the communication between the microenvironment and normal stem cells

are also indispensable for cancer stem cell maintenance. The best studied examples

include sonic hedgehog, wnt and Notch pathways (Clement et al. 2007; Malanchi

et al. 2008; Bolos et al. 2009). Hypoxia promotes normal stem cell maintenance, but

the roles of hypoxia and HIFs in cancer stem cell maintenance have just begun to be

appreciated. The discovery of the importance of hypoxia and HIFs in cancer stem

cells has significant implications. On one hand, it indicates that the current cell

culture conditions for cancer cells using ambient air conditions are not ideal and

may create a loss of cellular diversity that was present in the parental tumor.

Ambient air conditions submit cells to hyperoxic stress, which may lead to

irreversible genetic or epigenetic changes that do not represent in vivo situation.

To study cancer heterogeneity, in vitro assays should be conducted in restricted

oxygen conditions. Stem cell biologists realize this and we believe this concept

should be emphasized in cancer research as well (Wion et al. 2009). On the other

hand, the importance of hypoxia, particularly HIFs in cancer stem cell provides us

new targets for anti-cancer stem cell drug discovery. In malignant gliomas, HIF2a
seems one of the better targets as it is highly induced in cancer stem cells but absent

in normal tissues including normal stem cells. Further studies are needed to clarify

whether HIF2a is also expressed and indispensable in cancer stem cells of
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other tumor types and identify the best strategies to target this conventionally

“undrugable” transcriptional factor.
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Abstract In recent years, a variety of experimental evidence has convincingly

shown that progression of malignant tumors does not depend exclusively on cell-

autonomous properties of the cancer cells, but can also be influenced by the tumor

stroma. The concept that cancer cells are subjected to microenvironmental control

has thus emerged as an important chapter in cancer biology. Recent findings have

suggested an important role, in particular, for macrophages, endothelial cells, and
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cancer-associated fibroblasts (CAFs) in tumor growth and progression. Numerous

lines of evidence indicate that the bone marrow is the source, at least in part, of

these cells. This chapter summarizes our current knowledge of how bone marrow

contributes to the tumor stroma, with particular emphasis on CAFs. The potential

role of hypoxia in modulating the differentiation and activity of CAFs, and the

therapeutical implications of targeting CAFs for anticancer therapy are discussed.

1 Introduction

Untransformed cells require a specific environmental niche for their growth and

survival. The concept that transformed cells are subjected to microenvironmental

control and that the tumor microenvironment is a crucial component of cancer pro-

gression is now emerging (Hanahan and Weinberg 2000; Coussens and Werb 2002;

DeWever andMareel 2003; Tlsty and Coussens 2006; DeWever et al. 2008; Lorusso

and Ruegg 2008). A link between inflammation and cancer was already recognized in

1863 byRudolphVirchow,when he reported the presence of leucocytes in tumor tissue

(Balkwill andMantovani 2001). In recent years, a variety of experimental evidence has

convincingly shown that progression ofmalignant tumors does not depend exclusively

on cell-autonomous properties of the cancer cells, but can also be influenced by the

tumor stroma, namely by the compartment that provides the connective-tissue frame-

work of the tumor itself (Bissell et al. 2002; Coussens and Werb 2002).

The tumor stroma is formed by a variety of cells including fibroblasts, immune

and inflammatory cells, and adipocytes, which are all embedded in an extracellular

matrix (ECM) and nourished by an enriched vascular network. In its cellular make-up,

it thus resembles the granulation tissue of healing wounds. Notably, malignant

tumors have also been characterized as “wounds that never heal” (Dvorak 1986).

However, the amount of stroma and its composition vary from tumor to tumor. In

some cases of commonly occurring carcinomas, the nonneoplastic cells may

account for as many as 90% of the cells within the tumor mass (Weinberg 2007).

The interactions between cancer cells and the surrounding stroma are complex,

and only partially elucidated. Cancer cells alter their adjacent stroma by producing a

large range of growth factors and proteases. These factors activate adjacent stromal

cells in a paracrinemanner, and thus cause the secretion by these cells of another array

of growth factors and proteases, which in turn affect tumor growth and metastasis.

This “vicious cycle” has become the target of novel therapeutic approaches to cancer

(Liotta and Kohn 2001; Albini and Sporn 2007; Pietras et al. 2008).

Recent findings have suggested an important role, in particular, for macro-

phages, endothelial cells, and cancer-associated fibroblasts (CAFs) in tumor growth

and progression. Numerous lines of evidence indicate that the bone marrow is the

source, at least in part, of these cells. This chapter summarizes our current knowl-

edge about the contribution of the bone marrow to the tumor stroma, with particular

emphasis on carcinoma-associated fibroblasts (CAFs). The potential role of hyp-

oxia in modulating the differentiation and activity of CAFs is discussed.
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2 Adult Bone Marrow

2.1 Hematopoietic Stem Cells, Mesenchymal Stem Cells
and Endothelial Progenitors Cells

The bone marrow comprises both hematopoietic and mesenchymal populations.

Hematopoietic cells derive from self-renewing hematopoietic stem cells (HSCs),

and constitute the vast majority of the adult bone marrow’s cellularity, whereas the

mesenchymal population is thought to originate from mesenchymal stem cells

(MSCs) (Schipani and Kronenberg 2008). The presence of nonhematopoietic

stem cells in the bone marrow was first suggested by the German pathologist

Cohneim about 130 years ago. He proposed that bone marrow can be the source

of fibroblasts contributing to wound healing in numerous peripheral tissues

(Prockop 1997). In the early 1970s, the pioneering work of Friedenstein and

colleagues demonstrated that rodent bone marrow had fibroblastoid cells with

clonogenic potential in vitro (Friedenstein et al. 1970, 1980). Over the years,

numerous laboratories have confirmed and expanded these findings by showing

that cells isolated according to Friedenstein’s protocol were also present in the

human bone marrow and by demonstrating that these cells could be subpassaged

and differentiated in vitro into a variety of cells of the mesenchymal lineages

(Prockop 1997; Pittenger et al. 1999; Caplan 2007; Kolf et al. 2007; Bianco et al.

2008). Friedenstein had thus isolated from the bone marrow what later on would be

renamed “mesenchymal stem cell” or MSC.

The current model proposes that there are at least two types of stem cells in the

bone marrow: HSCs and MSCs. HSCs would give rise to hematopoietic cell types

and to cells that resorb bone (osteoclasts), whereas MSCs would differentiate into a

variety of mesenchymal lineages such as chondrocytes, adipocytes, and osteoblasts,

at least in vitro. However, recent experimental evidence has indicated that MSCs are

likely to be just a subset of a heterogeneous population of nonhematopoietic cells in

the adult bone marrow. Endothelial progenitor cells (EPCs) constitute another subset

of bone marrow nonhematopoietic cells. EPCs are considered endothelial precursors

that reside in the bone marrow and are released into the bloodstream to contribute to

vasculogenesis in injured organs (Asahara et al. 1999).

2.2 Fibrocyte Progenitor Cells

Another cell type of bone marrow origin and referred to as “fibrocyte” has been

recently characterized (Bucala et al. 1994; Quan et al. 2004; Barth and Westhoff

2007; Bellini and Mattoli 2007; Quan and Bucala 2007). Fibrocytes are collagen-

producing cells of the peripheral blood, and comprise 0.1–0.5% of the circulating

population of “nonerythrocytic cells”. They were first identified as cells that, upon
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isolation from blood and subsequent in vitro culture, exhibited mixed morphological

and molecular characteristics of HSCs, monocytes, and fibroblasts. They are pres-

ent in wounds, at sites of pathological fibroses, and in the reactive stroma of tumors

(Metz 2003; Phillips et al. 2004; Bellini and Mattoli 2007; Wynn 2008). It is not

clear whether fibrocytes exist in circulation as such, though it is more likely that

they represent the obligate intermediate stage of differentiation into mature mesen-

chymal cells of a bone marrow-derived precursor of the monocyte lineage that

circulates and becomes a “fibrocyte” only at specific tissue sites under permissive

conditions (Bellini and Mattoli 2007). Fibrocytes are thought to derive from the

hematopoietic lineage since they express cell surface antigens such as CD34,

CD45, and CD11b, though they produce matrix proteins such as collagen type I

and fibronectin; moreover, their bone marrow origin has been extensively docu-

mented in transplant models (Bellini and Mattoli 2007). They also constitutively

secrete ECM degrading enzymes, primarily MMP9 (Quan et al. 2004; van Deventer

et al. 2008), which promotes endothelial cell invasion, and several proangiogenic

factors including VEGF, bFGF, IL-8, and PDGF (Hartlapp et al. 2001; Metz 2003;

Quan et al. 2004). Collectively, these findings suggest that the fibroblast population

of bone marrow origin contributing to wound healing proposed 130 years ago by the

German pathologist Cohneim could indeed be formed, at least in part, by fibrocytes.

Of note, although the bone marrow appears to give origin to fibrocyte precursors, to

this date the presence of differentiated fibrocytes in the bone marrow has not yet

been reported.

2.3 Contribution of the Adult Bone Marrow to the Tumor Stroma

As aforementioned, the contribution of the bone marrow to the reactive stroma of

tumors is an active field of investigation, as a tumor is not only composed of

transformed cells, but is also intimately associated with endothelial cells, fibro-

blasts, and inflammatory cells that constitute its stroma and can potentially influ-

ence its growth (Hughes 2008; Zumsteg and Christofori 2009). Each of these cell

types is contributed, at least in part, by the bone marrow. Bone marrow is the source

of TAMs or tumor-associated macrophages (Wels et al. 2008). Accumulation of

TAMs in the hypoxic regions of tumors, i.e., in the most malignant ones, has been

well documented, and is likely regulated by a hypoxic-mediated chemoattractive

gradient involving growth factors such as VEGF, which is induced by the HIF-1

(hypoxia-induced factor-1) transcription factor (Wels et al. 2008). TAMs and

inflammation in general are believed to promote tumor development and progres-

sion by a variety of mechanisms including angiogenesis and remodeling of the

ECM (Coussens et al. 2000; van Kempen and Coussens 2002; Balkwill and

Coussens 2004; Mueller and Fusenig 2004; Tan and Coussens 2007; Pahler et al.

2008; DeNardo et al. 2009). VEGF produced by the hypoxic tumor also mobilizes

EPCs from the bone marrow, which ultimately infiltrate and get incorporated into

the newly formed vasculature (Wels et al. 2008). Lastly, the adult bone marrow
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provides CAF precursors (Wels et al. 2008), although it is still uncertain whether

tumor hypoxia is critical in their recruitment to the tumor.

3 Carcinoma-Associated Fibroblasts

3.1 Definition of CAFs

CAFs or carcinoma-associated fibroblasts are the most abundant cells of the tumor

microenvironment (De Wever and Mareel 2003; Orimo et al. 2005; Baglole et al.

2006; Kalluri and Zeisberg 2006; Orimo and Weinberg 2006). CAFs are associated

with cancer cells at all stages of cancer progression, and their structural and

functional contributions to this process are just beginning to emerge. The vast

majority of CAFs are indeed myofibroblasts. Myofibroblasts are typically present

at the sites of wound healing and chronic inflammation. As myofibroblasts, CAFs

are spindle-shaped mesenchymal cells that share characteristics with both smooth

muscle cells and fibroblasts. Their presence is revealed by their expression of alpha-

smooth muscle actin (a-SMA), which is a classical marker of smooth muscle cells,

and of vimentin, which is a classical marker of fibroblasts (De Wever et al. 2008).

Of note, a-SMA is absent in normal dermal fibroblasts (De Wever et al. 2008).

3.2 Tissue-Origin of CAFs and Molecular Mechanisms
that Control Their Differentiation and Activity

Since CAFs lack genetic mutations typically found in neighboring tumor cells, a

possible tumor origin of these cells following epithelial-to-mesenchymal transition

seems to be unlikely (Kalluri and Zeisberg 2006). Conversely, in vivo evidence in

favor of fibroblast invasion into the tumor compartment has been recently provided

(Fukumura et al. 1998). Solid tumor implantation in transgenic mice expressing

GFP under the control of the VEGF promoter leads to induction of host VEGF

promoter activity in fibroblasts (Fukumura et al. 1998). With time, GFP-positive

fibroblast-like cells invade the tumor and can be seen throughout the tumor mass

(Fukumura et al. 1998).

CAFs might differentiate from normal stromal fibroblasts of the surrounding

tissue, from bone marrow-derived MSCs recruited to the tumor (Hall et al. 2007), or

from bone marrow-derived fibrocyte precursors (Ishii et al. 2003; Metz 2003;

Direkze et al. 2004, 2006; Bellini and Mattoli 2007) upon activity of growth factors

such as TGFb1. TGFb1 is a growth factor secreted by a range of tumor cells and is

known to mediate the interaction of cancer cells with stromal fibroblasts.

In particular, the ability of TGFb1 to induce fibrocyte differentiation into myofi-

broblasts has been extensively documented in vitro (Metz 2003; Hong et al. 2007).
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Upon TGFb1 treatment human CD34(þ) alphaSMA(�) fibrocytes can differentiate

into CD34(�) alpha SMA(þ) myofibroblasts in in vitro cultures (Hong et al. 2007).
In vivo, several histopathological studies have correlated the loss of CD34(þ)

stromal cells at tumor sites with malignant potential, and other studies have

associated the loss of CD34 expression with an increase in alpha SMA production

(Barth et al. 2004; Quan et al. 2004; Barth and Westhoff 2007). It is possible that

each of these changes could be the consequence of fibrocytes differentiating into

CAFs. Both cancer cells and cells at the interface of malignant lesions produce high

amounts of TGFb1 and hypoxic regions of tumors contain elevated levels of

endothelin-1 (ET-1) (Bellini and Mattoli 2007). It has been suggested the apparent

loss of CD34(þ) cells and the concomitant increase in the number of CD34(�)

alphaSMA(þ) cells in the stroma surrounding malignant lesions may indicate an

increased differentiation of CD34(þ) fibrocytes into mature CD34(�) CAFs trig-

gered by the presence of excessive levels of both TGFb1 and ET1 (Bellini and

Mattoli 2007). Since fibrocytes, but not CAFs, have antigen-presenting capabilities

(Bellini and Mattoli 2007), it is tempting to speculate that fibrocytes could be

important for local immunosurveillance, whereas their differentiation into CAFs

would favor a more invasive phenotype of malignant tumors (Feldon et al. 2006).

3.3 Regulation of Tumor Initiation, Progression
and Metastasis by CAFs

Numerous lines of evidence suggest an important role for CAFs in tumor initiation,

progression, and metastasis. When normal human prostate epithelial cells immor-

talized by SV40 T-antigen are introduced into nude mice, they fail to form tumors.

However, if the same cells are mixed with CAFs extracted from human prostate

carcinoma, tumors arise. Interestingly, tumors do not form if immortalized prostate

epithelial cells are mixed with fibroblasts isolated from normal prostate (Olumi

et al. 1999). Furthermore, bone-marrow-derived human MSCs, which are thought

to contribute to CAFs, when mixed with weakly metastatic human breast carcinoma

cells, increase their ability to metastasize upon subcutaneous transplantation, with a

mechanism that involves the chemokine CCL5 secreted by the MSCs, and its

receptor CCR5 present on cancer cells (Karnoub et al. 2007).

In addition, CAFs extracted from human breast carcinomas promote the growth

of mixed breast carcinoma cells significantly more than normal mammary fibro-

blasts derived from the same patients (Orimo et al. 2005; Orimo and Weinberg

2006). In these experimental conditions, the tumor-promoting effect of CAFs

appears to be linked to their ability to secrete stromal cell-derived factor 1 (SDF-1)

or CXCL12, which both promotes the recruitment of EPCs from the bone marrow

and directly stimulates growth of tumor cells through its action on the cognate

receptor CXCR4 expressed on carcinoma cells (Orimo et al. 2005; Orimo and

Weinberg 2006).
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It has been reported that inactivation of PTEN in stromal fibroblasts of mouse

mammary glands favors malignant transformation of mammary epithelial tumors,

by mechanisms involving the recruitment of Ets2 to target promoters (Trimboli

et al. 2009). Recent experimental evidence has also shown that senescent epithelial

cells promote the formation of epithelial tumors by yet unknown mechanisms (Shan

et al. 2009). Another example of how the stroma influences tumor progression is

provided by studies on the effects of radiotherapy on cancer cells. There is evidence

suggesting that the antitumor effect of the radiotherapy is contributed at least in part

by the generation of fibrotic scar tissue that restrains tumor invasion. However,

clinical and experimental observations also indicate that irradiated stroma might

exert tumor-promoting effects (Milas et al. 1988). Tumors growing within a pre-

irradiated stroma have reduced growth but show a more invasive and metastatic

phenotype, most likely because they have reduced angiogenesis and they are more

hypoxic compared to control tumors (Monnier et al. 2008).

The current working hypothesis is that CAFs aid tumorigenesis at least in part

through their ability to support vasculogenesis and angiogenesis, with both VEGF

dependent and independent mechanisms (Dong et al. 2004). In addition to proan-

giogenic factors, CAFs also secrete a variety of serine proteases and metallopro-

teinases, which favor tumor growth, progression, and metastasis by degrading and

remodeling the ECM (Masson et al. 1998). In this regard, imaging of co-cultures of

squamous cell carcinomas and CAFs revealed that stromal cells direct the migration

of epithelial cancer cells by triggering both proteolytic and structural changes of the

ECM (Gaggioli et al. 2007). Lastly, CAFs positively modulate the recruitment of

inflammatory cells and/or directly stimulate tumor growth and progression by

expressing a wide range of growth factors, cytokines, and chemokines (Nazareth

et al. 2007; Koyama et al. 2008).

Interestingly, conditional inactivation of the TGFb type II receptor gene in

mouse fibroblasts (Tgfbr2fspKO) led to prostate and stomach cancer, both asso-

ciated with an increased abundance of stromal cells (Bhowmick et al. 2004; Stover

et al. 2007). Activation of paracrine hepatocyte growth factor (HGF) signaling

was identified as one possible mechanism for cancer initiation and progression.

These findings show a tumor-suppressive role for TGFb signaling in fibroblasts, in

part by suppressing HGF signaling between mammary fibroblasts and epithelial

cells, and they highlight the extreme complexity and “bipolar” nature of tumor-

stroma cross-talks (Bhowmick et al. 2004; Mueller and Fusenig 2004; Stover

et al. 2007).

The notion that not only the stroma influences cancer cells, but also cancer cells

affect the stroma, is supported by the recent finding that in a mouse model of

prostate carcinoma, cancer cells stimulate the induction of p53 protein in CAFs

through a paracrine mechanism. This process generates a selective pressure that

leads to the expansion of a subpopulation of CAFs that lack p53 and promote cancer

invasion (Hill et al. 2005). Notably, in human breast cancers, loss of p53 in the

stroma has been significantly associated with lymph nodes metastasis (Patocs

et al. 2007).
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4 Tumor Hypoxia and CAFs

4.1 Chronic and Acute Hypoxia in Malignancies

Hypoxia is one of the hallmarks of malignant tumors (Hall and Giaccia 2006).

Hypoxia in tumors can result from two different mechanisms: chronic vs. acute.

Chronic hypoxia is the consequence of oxygen consumption by tumor cells that are

inadequately perfused due to the distance between the cancer cells and the nearest

blood vessels. Acute hypoxia is the result of the temporary closing of a blood vessel

due to the malformed vasculature of the tumor. Tumor cells are exposed to a

continuum of oxygen concentrations, ranging from the highest oxygen tensions

surrounding cells nearby capillaries to the lowest oxygen tensions surrounding cells

that are the most distant from the capillaries. Both chronic and acute hypoxia are

correlated with poor outcome, and have been shown to drive malignant progression.

Hypoxia increases the malignancy of cancer cells by gene amplification, genomic

instability, and selecting for cells that lack wild-type p53 (Graeber et al. 1996).

Moreover, hypoxia promotes angiogenesis through the induction of proangiogenic

mitogens such as VEGF, increases glucose uptake and glycolytic metabolism,

increases the expression of ABC transporters, promotes invasive growth, and

reduces the effectiveness of therapies that require oxygen to be effective such as

radiotherapy (Leo et al. 2004; Erler et al. 2006; Koukourakis et al. 2006; Chan et al.

2007; Cosse and Michiels 2008; Rankin and Giaccia 2008; Erler et al. 2009;

Semenza 2009).

Up to one percent of the genome is transcriptionally regulated by hypoxic stress

(Denko et al. 2003; Giaccia et al. 2004; Chan et al. 2007). A substantial portion of

hypoxia-induced genes are regulated by HIF-1. Hypoxia-inducible factor-1 (HIF-1),

a ubiquitously expressed transcription factor, is a major regulator of cellular

adaptation to hypoxia (Bunn and Poyton 1996; Kaelin 2002; Giaccia et al. 2003;

Semenza 2003; Liu and Simon 2004). HIF is a heterodimeric DNA-binding com-

plex that consists of two basic helix-loop-helix (bHLH) proteins of the PER/ARNT/

SIM (PAS) subfamily, HIF-1a and HIF-1b (Wang et al. 1995). Interestingly, while

HIF-1a and HIF- 1b mRNAs are ubiquitously expressed (Wenger et al. 1997), HIF-1a
protein is rapidly degraded under normoxic conditions but increases exponentially

as O2 levels fall below 5% (Wang and Semenza 1993; Ivan et al. 2001; Jaakkola

et al. 2001; Chan et al. 2002; Min et al. 2002; Pouyssegur et al. 2006). In contrast,

HIF-1b (also known as aryl hydrocarbon nuclear translocator or ARNT) is non-

oxygen responsive. The HIF-1a/HIF-1b complex binds to a specific sequence

50-RCGTG-30 (where R denotes a purine residue) termed hypoxia response ele-

ments (HREs), and transactivates target genes containing HREs (Kallio et al. 1998).

HIF-1a itself does not directly sense variations in O2 tension (Chan et al. 2005).

Instead, a class of 2-oxoglutarate-dependent and Fe2+-dependent dioxygenases act

as O2 sensors (Pouyssegur et al. 2006). Prolyl-hydroxylase domain proteins (PHDs)

are the O2 sensors involved in HIF-1a or its family member HIF-2a degradation.

PHDs hydroxylate two prolyl residues (P402 and P564) in the HIF-a region referred
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to as the O2-dependent degradation domain (ODD) (Berra et al. 2003). This

modification occurs in normoxic conditions and mediates the binding of the von

Hippel-Lindau tumor suppressor protein (pVHL) – which is an E3 ubiquitin ligase –

to the alpha subunit of HIF-1 or HIF-2. These subunits are then marked with

polyubiquitin chains and targeted for degradation by the proteasome. Under hyp-

oxic conditions, the activity of the PHDs decreases, resulting in diminished proline

hydroxylation. As a result, HIF-1a or HIF-1b protein accumulates, translocates to

the nucleus, dimerizes with HIF-1b, recruits transcriptional co-activators, and binds
to HREs within the promoters of hypoxia-responsive genes (Kallio et al. 1999). To

date, more than one hundred putative HIF target genes have been identified (Wykoff

et al. 2000; Bishop et al. 2004; Leo et al. 2004; Greijer et al. 2005). They are

involved in a wide variety of biological processes including energy metabolism,

angiogenesis, erythropoiesis, cell survival, apoptosis, redox, and pH regulation

(Maxwell et al. 1999; Greijer et al. 2005).

Several other transcription factors are also activated by hypoxia: cyclic-AMP

response element binding (CREB) protein, the activator protein-1 (AP1), the

nuclear factor kb (NF-kb), and the early growth response-1 protein (Egr-1). More-

over, other important non-HIF mediated hypoxia-signaling pathways involve the

unfolded protein response (UPR) and the mTOR (target of rapamycin) kinase

signaling pathway (Wouters and Koritzinsky 2008) (Feldman et al. 2005).

4.2 CAFs and Hypoxia: A Working Hypothesis

As discussed above, the role of hypoxia in recruitment of TAMs and EPCs has been

previously documented. Although CAFs and hypoxia are both crucial for tumor

progression, little is known about how hypoxia affects recruitment and activation of

CAFs. Experimental evidence suggests that hypoxia might regulate differentiation

and activity of CAFs in malignant tumors in a variety of different ways (Fig. 1).

Hypoxia and the HIF family of transcription factors have been linked to fibrosis

in a variety of tissues and during various pathological conditions. HIF-1 promotes

proximal renal fibrosis by regulating the endothelial-mesenchymal transition in the

kidney (Higgins et al. 2008). Moreover, hypoxia and HIFs drive fibrosis by

controlling the remodeling of the ECM and modulating the TGFb signaling path-

way (Higgins et al. 2008). Lastly, experimental evidence indicates that recruitment

of fibrocytes/myofibroblasts to sites of pathological fibroses may be driven by

hypoxia (Phillips et al. 2004; Hayashida et al. 2005; Jiang et al. 2006; Mehrad

et al. 2009). Although it is unknown whether tumor hypoxia does indeed play a role

in recruitment of CAF precursors to the tumor, tumor hypoxia may control differ-

entiation of CAFs from precursor cells through mechanisms involving TGFb and

ET-1, which have been shown to be important for myofibroblast formation and are

known to be regulated by hypoxia (see above).

Moreover, it is now established that CAFs promote angiogenesis by releasing

chemotactic signals such as CXCL12, which help to recruit EPCs into the tumor
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stroma, and by secreting a series of proangiogenic factor such VEGF, BFGF, IL8,

and angiopoietins. Notably, each of these agents is a well-known downstream target

of hypoxia, and increased angiogenesis is one of the hallmarks of the hypoxic

response. Lastly, the selective pressure for the expansion of a subpopulation of

CAFs that lack p53, as it has been documented both in experimental models of

cancer and in human cancers (Hill et al. 2005; Patocs et al. 2007), could be indeed

the consequence of the hypoxic microenvironment of malignant tumors.

Paradoxically, CAFs, at least in some settings, may aid the survival of hypoxic

cancer cells by undergoing metabolic changes that mirror the phenotype of malig-

nant cells. Immunohistochemical analysis of colorectal adenocarcinomas has

demonstrated that cancer cells express enzyme/transporter activities suggestive of

anaerobic metabolism. In contrast, CAFs express proteins involved in lactate

absorption and oxidation, concomitant with reduced glucose absorption. Overall,

the findings are consistent with the notion that CAFs express complementary

metabolic pathways, buffering and recycling products of anaerobic metabolism to

promote cancer cell survival (Koukourakis et al. 2006).

5 Future Perspectives

As we have emphasized in this brief summary, a variety of experimental evidence

supports the notion that CAFs are likely to be crucial for tumor progression and

metastasis, and that targeting CAFs and the microenvironment could be a promising

approach to cancer therapy (Ahmed et al. 2008; Kiaris et al. 2008; Aharinejad et al.

2009; Anton and Glod 2009; Chometon and Jendrossek 2009). However, much

needs still to be discovered about these cells and their functional and structural

Carcinoma Cells
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Angiogenic Factors
Metalloproteinases
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Fig. 1 Carcinoma-associated fibroblasts (CAFs) play a major role in organizing the tumor

microenvironment and in modulating tumor growth, invasion, and metastasis. For more details,

see text
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contributions to cancer. A series of critical questions related to the origin of CAFs

and to modulation of their activity need to be addressed. How does regulation of

bone marrow homeostasis in vivo affect the number and activity of CAFs in

carcinomas? Is it possible to control the CAF population by altering the remodeling

process in bone and in the bone marrow? How much of the genetic make-up of

CAFs is the consequence of their adaptation to hypoxia? Is there a “CAF signature”

across fibroblasts isolated from a variety of tumors with different degrees of

malignancy? The ultimate goal of addressing these questions would be the identifi-

cation of pharmacological tools that could be used to control the CAF population

in vivo and its effects on tumor progression (Ahmed et al. 2008; Kiaris et al. 2008;

Aharinejad et al. 2009; Anton and Glod 2009; Chometon and Jendrossek 2009).

To this end, precursors of CAFs could be used as a vehicle for anticancer

therapy. It has been suggested that MSCs home to tumors and contribute to

CAFs. Theoretically, MSCs could thus be genetically modified to produce anticancer

agents to be delivered in situ. This is an exciting possibility that should be

considered as a new approach to cancer therapy (Hall et al. 2007).
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Abstract The molecular response of cancer cells to hypoxia is the focus of intense

research. In the last decade, research into microRNAs (miRNAs), small RNAs

which have a role in regulation of mRNA and translation, has grown exponentially.

miR-210 has emerged as the predominant miRNA regulated by hypoxia. Elucida-

tion of its targets points to a variety of roles for this, and other hypoxia-regulated

miRNAs (HRMs), in tumour growth and survival. miR-210 expression correlates
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with poor survival in cancer patients, and shows promise for future use as a tumour

marker or therapeutic agent. The role of miR-210 and other HRMs in cancer

biology is the subject of this review.

Abbreviations

Ago2 Argonaute 2

ARE AU-rich element

CaCo Colon cancer cell line

CaLu Lung cancer cell line

CNE Nasopharyngeal carcinoma epitheliod cell line

DFOM Desferrioxamine

DRFS Distant Relapse Free Survival

eIF Eukaryotic translation initiation factor

Fe–S Iron sulphur clusters

HRM Hypoxia-regulated miRNA

HUVEC Human umbilical vein endothelial cells

IP Ischaemic preconditioning

IRE Iron-responsive element

IRES Internal ribosomal entry sites

miRNA microRNA

miRNP Microribonucleoprotein complex

mRNA messengerRNA

MSC Mesenchymal stem cell

PABP Poly-A tail binding protein

P-body Processing body

qPCR Quantitative real time polymerase chain reaction

RISC RNA-induced silencing complex

RNAi/siRNA RNA Interference/small interfering RNA

UTR Untranslated region

1 Discovery of miRNAs

miRNAs were first discovered in 1993, in a work on the worm Caenorhabidititis
elegans. Expression of a 22-nucleotide molecule, lin-4, with antisense comple-

mentarity to the 30-untranslated region (UTR) of the lin-14 gene, was found to be

necessary for progression of worms from the first to second larval stages (Lee et al.

1993; Wightman et al. 1993). Another small RNA molecule, let-7, with critical

function in larval development was later discovered. Mutations of this gene were

associated with heterochronic developmental defects, due to the dysregulation of
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the lin-41 gene. Genetic analysis revealed that let-7 was an untranslated RNA,

which was complementary to part of the 30-UTR of the lin-41 gene. It was proposed

that lin-4 and let-7 were negatively regulating the lin-4 and lin-41 genes, respec-

tively, by inhibition of the mRNA translation mechanism (Reinhart et al. 2000;

Slack et al. 2000).

2 miRNA Structure, Processing and Function

miRNAs are a family of small, non-coding RNA sequences 18–25 nucleotides

long. They are transcribed as primary transcripts (pri-miRNA) embedded in either

independent non-coding RNAs or in the introns of protein-coding genes. Some

miRNAs, such as the miR-17 family, are clustered in polycistronic transcripts to

allow coordinated expression (Hayashita et al. 2005). Since the discovery of lin-4

and let-7, the list of known miRNAs has grown to many hundreds, and many more

are predicted to exist (Pillai et al. 2007).

Pri-miRNA is processed in the nucleus by Drosha (an RNAse III enzyme)

associated with the DGCR8 (DiGeorge syndrome critical region gene 8) double-

stranded RNA-binding protein. Cleavage of the pri-miRNA by Drosha results in a

molecule about 70 nucleotides in length, termed the pre-miRNA, which translo-

cates to the cytoplasm assisted by the nuclear export factor Exportin 5/RAN GTP.

Here, it is further cleaved by a second RNAse III enzyme, Dicer. One strand from

the processed double-stranded molecule (the one least stably paired at the 50 end)
enters the RNA-induced silencing complex (RISC) with Argonaute 2 (Ago2) pro-

teins, and the remaining (passenger) strand is degraded. The Ago2 proteins are the

effector molecules in the RNA interference (RNAi) mechanism. They may also

have a role in processing and cleavage of pre-miRNA in addition to Dicer, whilst

facilitating removal of the passenger strand from the RISC complex (Diederichs

and Haber 2007) (Fig. 1).

2.1 Translational Regulation and mRNA Degradation

The mature miRNA/RISC complex acts as a regulator of gene translation through

binding to complementary sites in the 30-UTR of mRNAs. If the complementarity is

perfect, the binding of the miRNA to the mRNA results in cleavage and degradation

of the mRNA molecule. This mechanism is thought to be more prevalent in plants,

and in animals the degree of complementarity is usually imperfect.

Efficient binding and silencing activity of a miRNA requires exact binding of

positions 2–7 of the miRNA, known as the seed region, to the complementary

sequence on the target mRNAmolecule. Perfectly matched complementary binding

of the seed region alone, however, does not accurately predict target repression.

Positions 12–17, towards the 30 end of the miRNA, are often highly conserved,
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and may be important in determining specific target interaction. Additionally,

the sequences surrounding the miRNA-responsive element could affect miRNA

binding or silencing efficacy (Doench and Sharp 2004; Brennecke et al. 2005;

AAAAAAAAA

x

(A)nm7G
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DGCR8

TRANSCRIPTION

MATURATION

Pri-miRNA

Pre-miRNA

Exportin 5

DicerTRBP

AGO2

miRNPs
AAAAAAAA(A)n

Initiation block

Degradation of
nascent peptide

Ribosomal
drop-off
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CCR4-
NOT
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Fig. 1 The pri-miRNA transcript is processed in the nucleus by the Drosha/DGCR8 complex to a

�70-nucleotide pre-miRNA. It is exported in to the cytoplasm by Exportin 5, where it is further

cleaved by Dicer/TRBP. One strand of the double-stranded RNA molecule becomes associated

with the Ago2/miRNP complex, acting as a guide strand. Binding of the miRNP to a complemen-

tary region on the target mRNA leads to inhibition of translation or degradation of the mRNA

molecule
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Grimson et al. 2007). Despite years of refinements to computational target pre-

diction algorithms, it is still an inexact science, and with significant variability in

predicted targets between different algorithms. This fact is perhaps reflected in our

limited understanding of the mechanism in which miRNAs and their associated

protein complex (together known as the microribonucleoprotein complex, or miRNP)

lead to gene silencing. Pioneering studies in C. elegans demonstrated that lin-4

inhibited lin-14 protein expression, while mRNA levels remained relatively con-

stant, suggesting a post-transcriptional mechanism of repression. They found that

the lin-14 30-UTR was necessary and sufficient to enable repression of the lin-14

protein (Wightman et al. 1993). Since the first studies of miRNAs, increasing

evidence has emerged pointing to the role of these molecules in both translational

repression and mRNA degradation.

2.2 Translational Inhibition

Theories on translational inhibition can broadly be categorised into those describing

blocking of translation initiation, and those describing repression of translation

post-initiation. Before describing these theories, a brief description of the steps

of mRNA translation, namely initiation, elongation, and termination, is merited.

Initiation occurs with binding of eIF4E, a subunit of the eukaryotic translation

initiation factor (eIF) eIF4F, to the 50-mRNA cap structure (m7GpppN). eIF4G,

another component of the eIF4F complex, binds to the poly-A tail binding protein

(PABP1), forming a circular mRNA structure. eIF4G simultaneously binds eIF3 to

facilitate assembly of the ribosome complex. The participation of at least ten

initiation factors is required to instigate protein translation. Following the assembly

of the 40S and 60S ribosomal subunits at an initiation codon (AUG), translation and

polypeptide elongation continues until a termination codon is encountered. This

results in disassembly of the translational machinery. The circularisation of the

mRNA is thought to aid in reassembly of the translational machinery at the 50 end
of the molecule, in readiness to begin the synthesis of another polypeptide molecule

(Kapp and Lorsch 2004).

Investigations demonstrating that miRNA-mediated repression occurs exclu-

sively in mRNAs with m7G cap structure, but not internal ribosomal entry sites

(IRES), suggested that repression is occurring at the initiation step (Pillai et al.

2005). In support of this were studies using polysome gradients. It was shown that

miRNA-repressed mRNAs sedimented closer to the top of the gradient, indicating

reduced ribosomal binding (Pillai et al. 2005). However, another group subse-

quently demonstrated cap-independent miRNA repression, and suggested that

ribosomal drop-off was a more likely mechanistic explanation (Petersen et al.

2006). Notrott et al. showed repression of protein production on actively translating

polysomes by let-7, and concluded that the miRNA was interfering with the

accumulation of growing peptides (Nottrott et al. 2006). Wakiyama et al. showed

miRNA-mediated deadenylation of mRNA, and suggested that shortening of the
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poly-A tail would prevent PABP1 association and binding to the cap structure, thus

preventing translation initiation (Wakiyama et al. 2007). Kiriakidou et al. reported

that the Ago proteins contain a limited cap-recognition motif, and argue that

competition with eIF4E for binding of the cap would inhibit translational inhibition

(Kiriakidou et al. 2007). Against this argument is the fact that Ago would appear to

have a lower binding affinity for the cap than eIF4E, and more recent evidence

showing that the Ago structure contains amino acids that are incompatible with

eIF4E-like mRNA-binding (Kinch and Grishin 2009).

A number of studies have reported co-sedimentation of miRNA with polysomes,

and have argued that this supports a post-initiation inhibitory mechanism. However,

it has been pointed out that binding of single miRNP to an mRNA will frequently

have no significant repressive effect. Co-sedimentation of the miRNPs with poly-

somes may therefore represent bound miRNAs exerting little or no repressive

effect, and therefore cannot be taken as proof of a post-initiation mechanism

(Filipowicz et al. 2008).

2.3 mRNA Degradation and P-Bodies

Microarray analyses of cells transfected with synthetic miRNA have demonstrated

that mRNA expression of many genes is downregulated as a result, suggesting

that degradation or sequestration of the transcripts must be occurring. In addition,

analysis of the significantly downregulated transcripts indicates that their 30-UTRs
are enriched with complementary seed-binding regions to the miRNA under investi-

gation (Bartel and Chen 2004; Bagga et al. 2005; Lim et al. 2005).

Processing bodies contain a number of proteins that are involved in mRNA

degradation. These include the 50 decapping enzymes DCP1 and DCP2, exori-

bonuclease 1 (XRN1) which causes 50–30 decay, and deadenylating enzymes

(CCR4-CAF1-NOT complex). Ribosomes and other factors which are required

for translation initiation are notably absent, with the exception of eIF4E and

eIF4E-transporter, which is implicated in translational repression (Eulalio et al.

2007). Argonaute, miRNAs and their mRNA targets have all been shown to localise

to P-bodies. miRNA-mediated mRNA decay has also been shown to be dependent

on the components mentioned above, in addition to the GW182 protein (so-called

because it contains glycine and typtophan repeats, and because of its molecular

weight) (Jakymiw et al. 2005; Liu et al. 2005; Pillai et al. 2005; Meister 2007).

While this provides compelling evidence that miRNA-mediated mRNA decay

requires the presence of P-body components, it is not clear whether the physical

environment of P-bodies is required. This is due to the fact that depletion of certain

proteins, e.g., LSm1 (part of the decapping co-activator complex) results in diffu-

sion of Ago2 throughout the cytoplasm, but with no impairment of miRNA-

mediated mRNA degradation activity. However, depleting cells of RCK/p54

(a DEAD box helicase) results in P-body loss and relief of miRNA-mediated transla-

tional repression (Chu and Rana 2006). Treatment of cells with cyclohexamide
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stabilises mRNAs into polysomes, and leads to loss of P-bodies. Conversely, inhibi-

tion of translation initiation by puromycin, for example, leads to accumulation of P-

bodies. This supports the hypothesis that P-bodies are the result of non-translating

mRNP accumulation (Anderson and Kedersha 2006). In other words, P-bodies

may well be the consequence of miRNA-mediated mRNA repression, rather than

the cause of it.

2.4 Translational Stimulation by miRNAs

AU-rich elements (AREs) appear in the 30-UTR of 12% of mammalian genes.

ARE-binding proteins are known to target these transcripts for exonucleolytic

decay of the poly-A tail, leading to mRNA degradation. It was discovered,

however, that in the state of cell-cycle quiescence, the presence of AREs can

lead to translational stimulation. Studies using reporter assays containing the

highly conserved 30-UTR ARE of Tumour Necrosis Factor a (TNFa) revealed
that in conditions of serum deprivation (leading to quiescence), translation was

increased fivefold. Fragile X mental retardation protein 1 (FXR1) was found to be

necessary for translational up-regulation, in addition to Ago2. Further studies

revealed that a miRNA, miR-369-3p, was essential for TNFa ARE-directed

translational up-regulation. Additionally, it was found that miR-369-3p switched

from activation of translation (in G0/G1 arrest – quiescence) to repression during

the cell cycle, with optimal repression occurring in late S-phase, close to the G2

boundary (Vasudevan and Steitz 2007; Vasudevan et al. 2007, 2008). Cell cycle

dependence of miRNA activity could prove to be highly relevant in the study of

tumour biology. Fluctuating vascular supply leading to hypoxia and serum depri-

vation will likely lead to areas of cellular quiescence, and thus variable responses

to miRNAs.

3 miRNAs are Dysregulated in Cancer

Early evidence of the significance of miRNA in cancer was demonstrated in the

Bantam miRNA, which caused overgrowth of wing and eye tissue in Drosophila

through negative regulation of the pro-apoptotic gene hid. Another miRNA, miR-14,

was demonstrated to suppress cell death (Hwang and Mendell 2006). More recently,

studies have demonstrated that tumour cells show a general down-regulation of

miRNA expression compared with normal tissues. It has also been shown that the

ratio of precursor miRNA to mature miRNA goes up in cancer, possibly pointing to a

defect in processing, contributing to cancer cell phenotypes. An analysis of gene

expression in primary tumours points to a failure in processing at the Drosha stage

(Thomson et al. 2006). miRNAs have been shown to have a role in stem cell

maintenance, differentiation and lineage determination (Wang et al. 2009b). This

The Role of Hypoxia Regulated microRNAs in Cancer 53



has been shown to be relevant in cancer by Yu et al., who demonstrated that breast

cancer stem cells showed reduced levels of the miRNA let-7. In addition, reduced

let-7 levels were required to maintain the undifferentiated state of these cells (Yu

et al. 2007).

Different solid tumours express different miRNA expression profiles (Volinia

et al. 2006; Yanaihara et al. 2006). A study, using bead-based flow cytometry, of

miRNA expression in multiple human tumours, demonstrated that it had signifi-

cantly greater diagnostic accuracy than a mRNA classification system (Lu et al.

2005). In fact, it is possible that miRNA classification could also detect pro-

malignant states. The apparent richness of information that can be derived from

miRNA expression profiles therefore has obvious diagnostic potential. It is possible

to detect miRNA in the plasma, and this may prove to be an effective source of

diagnostic markers of disease (Lawrie et al. 2008; Wang et al. 2009a).

miRNAs can exhibit behaviour as oncogenes or tumour suppressors. Let-7a-1 is

located at chromosome 9q22.3, a locus frequently deleted in colon cancer. It was

demonstrated that transfection of let-7a-1 precursors in to let-7 low-expressing

DLD-1 colon cancer cells caused a reduction in growth rate, in a dose-dependent

manner. Western blot analyses showed that expression of RAS and c-myc was

reduced in the DLD-1 cells transfected with exogenous let-7, adding further

evidence to its function as a tumour suppressor in this cell type (Akao et al.

2006). The miR-17-92 cluster consists of 6 miRNAs, and is located at 13q31, a

locus which is amplified in a number of tumours. A study was performed using

Em-myc transgenic mice (carrying the c-myc oncogene, driven by the immunoglob-

ulin heavy chain enhancer Em), which develop B-cell lymphomas by 4–6 months of

age. A truncated form of the miR-17 cluster, highly expressing all but one of the

five miRNAs, was introduced into the haematopoietic cells of these mice. This

resulted in a dramatic acceleration of disease onset and death (He et al. 2005).

4 miRNAs are Regulated by Hypoxia

Several studies have identified miRNAs which are regulated by hypoxia (Table 1)

Kulshreshtha et al. examined the effect of hypoxic stress in colon and breast

cancer cell lines. Their study uncovered many hypoxia-regulated miRNAs (HRMs),

though the majority were cell-line specific. However, a few HRMs were found to be

consistently upregulated across the cell lines, including miR-21, 23a, 23b, 24, 26a,

26b, 27a, 30b, 93, 103, 103, 106a, 107, 125b, 181a, 181b, 181c, 192, 195, 210 and

213 (Kulshreshtha et al. 2007). Hua et al. identified miRNAs induced by hypoxia

and desferrioxamine (DFOM) treatment in a human nasopharyngeal carcinoma

epitheliod (CNE) cell line (Hua et al. 2006). The list of upregulated miRNAs

differed substantially from that obtained by Kulshreshtha, probably due to the

different cell lines, experimental conditions, and expression profiling technology

employed. However, certain miRNAs, such as miR-210 and miR-181 were found to

be upregulated in common. They also identified a group of miRNAs repressed by
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Table 1 miRNAs up- and down-regulated in hypoxia

miRNAs up-regulated

by hypoxia

Study miRNAs down-

regulated by hypoxia

Study

let-7b 5 Let-7-a 2

let-7e 5 Let-7-c 2

Let-7-i 3 Let-7-d 2

miR-103 1 Let-7-f 2

miR-106a 1 miR-101 3

miR-107 1 miR-122a 3

miR-125a 4, 5 miR-128b 4

miR-125b 1 miR-141 3

miR-128a 5 miR-15b 2

miR-137 5 miR-181d 4

miR-148a 3, 5 miR-186 3

miR-148b 3 miR-196a 4

miR-151 2 miR-196b 4

miR-152 4 miR-197 3

miR-15a 3 miR-19a 3

miR-181a 1 miR-200a* 4

miR-181c 1 miR-20a 2

miR-185 5 miR-20b 2

miR-188 2, 4 miR-216 5

miR-191 3, 4 miR-224 2

miR-192 1 miR-25 4

miR-193b 4 miR-29b 3

miR-199a 5 miR-30e-5p 3

miR-20 5 miR-320 3

miR-200a 3 miR-373* 4

miR-200b 4 miR-374 3

miR-204 5 miR-422b 3

miR-206 4 miR-424 3, 4

miR-21 1 miR-449 4

miR-210 1–5 miR-489 4

miR-213 1, 4, 5 miR-519e* 4

miR-214 3, 5 miR-565 3

miR-23a 1, 4 miR-9 5

miR-23b 1, 4, 5 miR-92 4

miR-24 1 miRNAs regulated by

hypoxia with

contrasting results

between studies

Study and regulation

(þ ¼ up/

� ¼ down)

miR-26a 1, 4

miR-27a 1

miR-27b 4

miR-299 5

miR-30a-3p 5 Let-7-e 3(þ); 2(�)

miR-30a-5p 4 Let-7-g 3(þ); 2(�)

miR-30c 4, 5 miR-150 5(þ); 4(�)

miR-30d 2, 4 miR-155 2, 5(þ); 4(�)

miR-335 5 miR-16 5(þ); 2(�)

miR-339 4 miR-181b 1, 2, 5(þ); 4(�)

miR-342 5 miR-195 1 (þ); 3(�)

miR-373 3 miR-26b 1, 5(þ); 2(�)

miR-429 3 miR-30b 1, 3, 5(þ); 2(�)

miR-452* 4

miR-491 4

(continued)
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hypoxia. Four of these miR-15, 16, 20a and 20b, were found to translationally

regulate Vascular Endothelial Growth Factor (VEGF) in luciferase reporter assays,

providing evidence for direct miRNA-mediated regulation of a key angiogenic

pathway (Hua et al. 2006). Of note, miR-15 and 16 are also known to have tumour

suppressor activity in chronic lymphocytic leukaemia through targeting the anti-

apoptotic protein BCL2. miR-15 and 16 are frequently deleted or downregulated in

these tumours (Cimmino et al. 2005).

Hypoxic regulation of miRNAs does not appear to be due to changes in the

processing machinery of these molecules. Donker et al. showed that miRNAs

were up- or downregulated in hypoxia trophoblast cells, but with no change in the

expression of Drosha, Exportin 5, Dicer, Ago2 and DP103 (DEAD box protein 103)

at mRNA level (Donker et al. 2007). miRNAs are frequently regulated by transcrip-

tion factors induced by stress pathways, which are also regulated by hypoxia inde-

pendently of HIF (Hypoxia Inducible Factor). For example, the miR-34 family is

induced by DNA damage and in a p53-dependent manner (He et al. 2007), and

miR-155 is transcriptionally induced by protein kinase C (PKC) and NF-kB (nuclear

factor kappa-light-chain-enhancer of activated B cells). Both p53 and NF-kB have

been implicated in the response of tumours to hypoxia (Kluiver et al. 2007).

Hypoxia regulated miRNAs from cell line studies (Table 1) showed a variety of

patterns in primary breast cancer (Fig. 2). However, two main patterns of miRNAs

expression could be distinguished, one set correlating with the hypoxia-regulated

miR-210, and a contrary pattern. Based on the expression of these miRNAs,

breast cancer patient samples could be stratified into two defined clusters (Fig. 2).

Cluster 1 was characterised by low expression of miRNAs upregulated by hypoxia,

such as miR-210, -24, -27a, whereas these miRNAs were over-expressed in cluster 2.

Furthermore, cluster 1 showed a significantly lower (Mann–Whitney test, Z ¼ �4.9,

p < 0.001) expression of a mRNA based hypoxia-score derived from a common

head and neck and breast cancer hypoxia signature (Buffa et al. 2010).

Table 1 (continued)

miRNAs up-regulated

by hypoxia

Study miRNAs down-

regulated by hypoxia

Study

miR-498 3

miR-512-5p 4

miR-563 3

miR-572 3

miR-628 3

miR-637 3

miR-7 3

miR-93 1, 4

miR-98 3

Studies: 1 colon and breast cancer cells, 0.2% O2, 8–48 h (Kulshreshtha et al. 2007); 2 nasopha-

ryngeal carcinoma cells, DFOM treatment, 20 h (Hua et al. 2006); 3 head and neck squamous

carcinoma cells, 1% O2, 1 h or 5% O2, 8 h (Hebert et al. 2007); 4 primary human cytotrophoblasts,

1% O2, 48 h (Donker et al. 2007); 5 colon cells, liquid–liquid interface (Guimbellot et al. 2009);

6 HUVEC Cells, 1% O2, 24 h (Pulkkinen et al. 2008)
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5 Hypoxia Inducible Factor and miR-210

HIFs are heterodimeric transcription factors consisting of a HIF-a molecule bound

to an aryl receptor nuclear translocator (ARNT, or HIF-b). In normoxia, the HIF-a
molecules, which exist as HIF-1,-2 or -3a, undergo prolyl hydroxylation and bind to
the von-Hippel Lindau protein which targets them for proteaosomal degradation

Fig. 2 Expression of hypoxia related miRNAs in breast cancer samples (N ¼ 219). Expression is

measured by Illumina miRNA arrays (Illumina Inc., San Diego), normalised and logged (base2),

and centred and standardised by gene (see bar). X-axis: 93 hypoxia-related miRNAs from cell lines

studies (Table 1) clustered on their expression pattern using hierarchical clustering with Pearson

correlation. Y-axis: breast cancer samples and normal tissue pools (indicated with a asterisk)
clustered in two groups using BIRCH, a recursive hierarchical clustering algorithm with Bayesian

optimisation of the number of clusters (Chiu et al. 2001). This method allows objective optimisa-

tion of the number of clusters using a Bayesian Information Criterion
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through ubiquitination. In hypoxia, hydroxylation does not occur and the HIF-a
molecules are stabilised and are able to bind to the constitutively expressed

ARNT (Harris 2002). Several studies now point to miR-210 as the miRNA most

ubiquitously upregulated by HIF across different tumour types and cell lines. It is

upregulated in the placentas of women with pre-eclampsia, a condition in which

inadequate blood supply to the placenta is known to cause tissue hypoxia (Pineles

et al. 2007; Zhu et al. 2009). It has been confirmed as a HIF-1 target through

knockout of HIFs using siRNA, constitutive over-expression studies, and chromatin

immunoprecipitation (Kulshreshtha et al. 2007; Camps et al. 2008).

6 HRMs and Cancer Prognosis

miRNAs have long been shown to be associated with cancer, but more recently,

studies have provided links of HRMs with clinical outcome. miR-210 is associated

with triple-negative lymph-node negative breast cancer (Foekens et al. 2008).

Greither et al. found that miR-210 and 155, both HRMs, were associated with poor

outcome in pancreatic adenocarcinoma, along with two other miRNAs, miR-203 and

miR-222 (Greither et al. 2010).

High miR-210 expression has been shown to be correlated with a poor outcome

in breast cancer, measured as both disease-free and overall survival. This was true

both when miR-210 expression was measured by qPCR (Camps et al. 2008) and by

Illumina microarrays (Fig. 3a) in a cohort of 210 early invasive breast cancers. Work

from our group (Buffa et al. in submission) found that the expression of the transcript
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Fig. 3 Association of miR-210 and a hypoxia miRNA signature with Distant Relapse Free

Survival. Log-rank test for the null hypothesis that the groups have equal survival is shown.

(a) There is no clinically defined cut-off point for miR-210 over-expression, thus patients were

stratified into two equal-size groups by miR-210 median value. (b) Patients were grouped using the

two clusters shown in Fig. 2
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containing the miR-210 precursor is also prognostic in independent breast cancer

datasets (Spearman rho ¼ 0.45, p < 0.001, N ¼ 216). In addition, miR-210 expres-

sion in breast cancer correlated positively with tumour hypoxia, determined through

a hypoxia-score based on the expression profiling of a 99-gene hypoxia metagene

(Camps et al. 2008) and a common head and neck and breast cancer hypoxia signature

(Spearman rho ¼ 0.45, p < 0.001, N ¼ 216) (Buffa et al. in submission). We also

found this in head and neck squamous cell carcinoma (Gee et al. 2010).

A primary tumour signature of hypoxia-related miRNAs from cell line studies

(Fig. 2) showed a prognostic trend in breast cancer (Fig. 3b) although this was not

significant (p ¼ 0.06). However, a signature of hypoxia-related miRNAs derived

by direct data-mining of breast cancer data was shown to be a significant indepen-

dent prognostic factor in breast cancer in multivariate analysis correcting for

clinico-pathological variables (Buffa et al. in submission).

7 HRM Targets

There has been considerable interest in miR-210 due to its consistent association

with hypoxia in both cell lines and tissues, and recently several publications have

uncovered some of its biological targets (Table 2).

Fasanaro et al. found that miR-210 was necessary for the formation of capillary-

like structures on Matrigel, in the U2OS osteosarcoma cell line. They also demon-

strated that miR-210 increased cell migration in response to VEGF. They showed

that EphrinA3 (EFNA3) was targeted and downregulated at protein level in

HUVECs by miR-210, using immunofluorescence and luciferase reporter assays.

Down-regulation of EFNA3 by miR-210 was necessary for tubulogenesis (Fasanaro

Table 2 Confirmed gene targets of miR-210

Gene symbol Gene name Study

EFNA3 Ephrin-A3 1, 2

RAD52 RAD52 homolog (S. cervisiae) 3

MNT MAX-binding protein 4

HOXA1 Homeobox A1 5

HOXA9 Homeobox A9 5

FGFRL1 Fibroblast growth factor-like 1 5

ISCU Iron sulphur cluster scaffold homolog 6, 7

CASP8P Caspase8-associated protein 2 8

NPTX1 Neuronal pentraxin 1 2

ACVR1B Activin receptor 1B 9

E2F3 E2F transcription factor 3 10

BDNF Brain-derived neurotrophic factor 11

PTPN1 Tyrosine-protein phosphatase non-receptor type 1 11

P4HB Protein disulphide isomerase 11

GPD1L Glycerol-3-phosphate dehydrogenase 1-like 11

Studies: 1 Fasanaro et al. (2008), 2 Pulkkinen et al. (2008); 3 Crosby et al. (2009); 4 Zhang et al.

(2009); 5 Huang et al. (2009); 6 Tong and Rouault (2006); 7 Chan et al. (2009); 8 Kim et al.

(2009); 9 Mizuno et al. (2009); 10 Giannakakis et al. (2008); 11 Fasanaro et al. (2009)
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et al. 2008). The Ephrins are receptor tyrosine protein kinases which have been

implicated in both development and erythropoeisis. The above work suggests a

mechanism by which miRNA is linked to angiogenesis.

Crosby et al. showed that miR-210 and miR-373, both upregulated in hypoxia in

HeLa (cervical cancer) and MCF7 (breast cancer) cell lines, target the protein

RAD52. RAD52 is a key factor involved in DNA double-strand break repair and

homologous recombination. RAD52 was downregulated in hypoxia, and this effect

was partially reversed by antisense inhibition of miR-210. miRNA mediation of the

DNA repair pathways may therefore be an important factor in genetic instability in

these tumour types (Crosby et al. 2009).

Zhang et al. showed that miR-210 derepresses c-myc function in hypoxia by

targeting MNT, a transcription factor which is known to antagonise myc function.

As HIF-1, but not HIF-2 is known to also antagonise myc, expression of miR-210

may serve to balance the effects of HIF-1 and therefore exert finer control over myc

function (Foshay and Gallicano 2007; Zhang et al. 2009).

Bianchi et al. showed an association of enhanced miR-210 levels with erythroid

differentiation and production of HbF (foetal haemoglobin), although they offered

no direct evidence of the role of the miRNA in this process (Bianchi et al. 2009).

Elevated VEGF levels in B-cell chronic lymphocytic leukaemia are associated

with advancing disease. These cells are able to spontaneously secrete VEGF, and its

expression has been linked to apoptosis resistance. It has been established that

B-CLL cells over-express HIF-1a in normoxia, in the presence of reduced expres-

sion of VHL. Ghosh et al. found that miR-92-1 is over-expressed in B-CLL, and

targets VHL protein, providing a mechanism for increased HIF-1a activity in this

cancer type (Ghosh et al. 2009).

Huang et al. investigated targets of miR-210 by using microarrays to identify

mRNAs which immunoprecipitated with Ago2, the primary component of the

miRNP complex. They validated Homeobox A1 (HOXA1), HOXA9 and Fibroblast

Growth Factor-like 1 (FGFRL1), with luciferase reporter constructs. The 30-UTR of

FGFRL1 contained seven potential binding sites of miR-210, and was thus selected

for xenograft studies along with HOXA1. They found that over-expression of

miR-210 in head and neck and pancreatic cancer cell xenografts in mice inhibited

the initial phase of tumour growth. They observed a partial rescue with over-

expression of FGFRL1 or HOXA1, suggesting that multiple genes are involved in

the inhibition of tumour growth initiation (Huang et al. 2009). Fasanaro et al.

identified a number of targets by immunoprecipitation of miR-210 enriched

RISC, and also through 2D gel and proteomic studies. They found that some proven

and/or predicted miR-210 targets, such as EFNA3, E2F3 (Giannakakis et al. 2008),

NPTX1 (Pulkkinen et al. 2008), RAD52 and ACVR1B (Mizuno et al. 2009) were

enriched in the immunoprecipitate. They confirmed new candidate miR-210 targets

such as brain-derived neurotrophic factor (BDNF), tyrosine-protein phosphatase

non-receptor type 1 (PTPN1), protein disulphide isomerase (P4HB), and glycerol-

3-phosphate dehydrogenase 1-like (GPD1L). Of note, they found that in some of

the targets, the miR-210 seed pairing region was located in the protein-coding

or 50-UTR region of the target mRNA, supporting other recent evidence that
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miRNA-binding is not restricted to the classic 30-UTR model (Orom et al. 2008;

Fasanaro et al. 2009; Tsai et al. 2009).

7.1 miR210 Regulation of ISCU and Mitochondrial Metabolism

miR-210 has recently been shown to target and downregulate the iron sulphur

cluster protein (ISCU). This protein acts as a scaffold for the assembly of iron

sulphur clusters [Fe–S], which are critical cofactors for enzymes involved in

electron transport, the Krebs cycle and iron metabolism. The Fe–S cluster proteins

are key components of the mitochondrial electron transport chain complexes I, II

and III, in addition to enzymes of the Krebs cycle: aconitase and the succinate

dehydrogenase activity of complex II (Rouault and Tong 2008).

Using mice carrying tamoxifen-dependent conditionally silenced VHL alleles,

Chan et al. demonstrated that miR-210 is present in much higher levels in the

absence of VHL in the kidney, liver and heart. Correspondingly, there was a

reciprocal relationship between VHL expression and ISCU protein levels in these

organs. In vitro assays demonstrated that inhibition of ISCU by miR-210, and thus

inhibition of iron–sulphur cluster formation, caused a reduction in aconitase and

mitochondrial complex I activity in hypoxia (Chan et al. 2009).

Work from our group concentrated on cancer cells, rather than primary cells. We

found that ISCU protein and mRNA in MCF7 and HCT116 (breast cancer) cell

lines were downregulated in response to hypoxia alone or exogenous miR-210

transfection. In addition to the effects of miR-210 on aconitase and complex I

activity, we found a striking effect of miR-210 on free radical production. Addition

of miR-210 in normoxia significantly increased superoxide production at 48 h, as

measured by MitoSox staining. Exposure of cells to hypoxia also increased super-

oxide, as expected, and this effect was completely reversed with transfection of

miR-210 inhibitors. Cotransfection of a plasmid containing the ISCU2 coding

sequence rescued the induction of superoxide production by miR-210 in normoxia.

Increased miR-210 in normoxia led to an increase in glycolysis, characterised by an

increase in lactate production and a reduction in pyruvate. We found that miR-210

inhibitors led to decreased lactate production in hypoxia.

We found that another consequence of ISCU down-regulation by miR-210 is

uptake of iron by the HCT116 cells. This is likely mediated by cytoplasmic

aconitase which, upon depletion of its Fe–S cluster, acts a translational regulator,

and is known as iron-responsive element (IRE)-binding protein 1 (IRP1). Increased

IRE binding leads to the post transcriptional repression of ferritin synthesis, and

increased expression of transferrin receptor, leading to increased cellular uptake of

iron (Tong and Rouault 2006) (Fig. 4).

Finally, we found that ISCU expression was significant in vivo. Xenografts of

the glioblastoma cell line U87, which had been treated with the VEGF inhibitor

Avastin (Bevacizumab) demonstrated Avastin-induced necrosis, and increased

expression of HIF-1a and its target genes, carbonic anhydrase 9 (CA9) and VEGF.
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These tumours were found to have marked up-regulation of miR-210, and recipro-

cal down-regulation of ISCUmRNA. Analysis of our breast (213 patients) and head

and neck (43 patients) tumour series showed a highly significant inverse rela-

tionship of miR-210 to ISCU expression. ISCU expression in these series was

significantly and negatively correlated with patient prognosis.

Thus, overall effects of a single miRNA are complex with both pro and anti-

tumorogenic effects. This will be further affected by gene expression profiles of

target genes and degree of induction which varies many folds between cell lines.

However, the strong clinical data suggests that the overall effect is positive for

tumour growth or metastasis.

7.2 HRMs and Apoptosis

A mechanism by which HIF-1a mediates hypoxia-induced apoptosis is by stabi-

lising p53 (An et al. 1998). Overexpression of miR-199a abolishes the induction

Fig. 4 The role of iron sulphur protein cluster homologue ISCU in metabolism. Iron is transported

into the mitochondria by a specific transport system and metabolised by a cysteine desulphurase

complex to form iron sulphur complexes, which are bound and chaperoned by ISCU. These iron

sulphur complexes are critical for active sites of many enzymes, which are synthesised as

apoenzymes. This applies to components of complex 1, 2 and 3 of the electron transport chain

and ISCU is critical in integrating the iron sulphur complexes into these subunits, to allow

effective ATP generation. The iron sulphur complexes are also exported by a specific transport

pathway to be used to assemble with apoproteins in the cytosol, with a separate set of chaperones

involved in cytostolic iron sulphur protein assembly. Amongst these enzymes is Aconitase 2 and

also nuclear enzymes involved in DNA repair such as FANCJ and XPD. Thus, ISCU down-

regulation will affect many fundamental metabolism processes
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of HIF-1a and p53 in myocytes in the first 24 h of exposure to hypoxia. Rane

et al. found that miR-199a is rapidly reduced to undetectable levels during

hypoxia. Hypoxia did not affect miR-199a*, which is expressed from the same

stem loop, nor did it affect miR-1, suggesting that it is a specific effect. In

addition, levels of the miR-199a precursor continued to accumulate during

hypoxia, suggesting that the effect is post-transcriptionally mediated. They

found that Sirtuin-1 induced down-regulation of prolyl hydroxylase 2 (PHD2)

is required for HIF-1a accumulation in myocytes during hypoxic pre-condition-

ing. In addition, HIF-1a appears to be a direct target of this miRNA. They found

that down-regulation of miR-199a during hypoxia was necessary for induction

of caspases �3, �6, �9, �12, and FasL, AIF and BNIP1. Over-expression of

miR-199a completely abolished the hypoxia-induced expression of these genes

(Rane et al. 2009).

Taguchi et al. identified HIF-1a as a target for the miR-17–92 cluster. They

found that the cluster regulated HIF expression in normoxia. However, expression

of the miR-17–92 cluster did not change in hypoxia, nor did it regulate HIF

in hypoxic conditions in their ACC-LC-172 and Calu6 lung cancer cell lines

(Taguchi et al. 2008). Interestingly, Yan et al. found that hypoxia did induce

down-regulation of members of the miR-17–92 cluster (miRs 18a, 19a, 19b

and 20a) in hypoxia in HCT116 p53þ/�) Caco-2 cells. They confirmed the role

of p53 by comparing HCT116 p53þ/�; as expected, the absence of p53 abolished

hypoxic repression of the miR-17–92 cluster. Repression of c-myc by siRNA reduced

normoxic levels of the miR-17–92 cluster, but did not inhibit further reduction in

expression in hypoxia. Conversely, p53 siRNA had little effect on normoxic

miR-17–92 levels, but abolished its down-regulation in hypoxia. They showed

that p53 has cis-regulator HRE activity, and that it competes with TATA-binding

protein (TBP) for a site in the miR-17–92 promotor region in hypoxic conditions

(Yan et al. 2009). As previously discussed, the miR-17–92 cluster targets the anti-

apoptotic BCL2. Down-regulation of this cluster by p53 may therefore represent

part of the mechanism for hypoxia-induced apoptosis (Xiao et al. 2008). This

example demonstrates the complex regulation of miRNAs in hypoxia, and goes

some way toward explaining the huge variability of individual cell-type responses

to stimuli such as hypoxia.

7.3 Ischaemic Preconditioning

Ischaemic preconditioning (IP) is a powerful cytoprotective stimulus for stem cells.

Cells subjected to cycles of hypoxia and reoxygenation, have improved survival in

more prolonged hypoxic conditions (Kim et al. 2009). It has recently been shown

that transplantation of such pre-conditioned cells in to infarcted heart improves its

function via enhanced survival of implanted cells and angiogenesis (Hu et al. 2008).

It is currently widely accepted that hypoxia in the tumour microenvironment is

typically cyclical, with fluctuating degrees of oxygenation (Dewhirst et al. 2008).
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The mechanism by which IP increases stem-cell survival and angiogenesis is,

therefore, likely to be equally important in the clonogenic stem cell population in

cancer. Kim et al. showed that miR-210 is upregulated in mesenchymal stem cells

(MSCs) following ischaemic pre-conditioning. They demonstrated that miR-210

targets and reduces expression of caspase-8-associated protein 2 (CASP8AP2)

twofold, following IP in MSCs exposed to anoxia. miR-210 knockdown in IP

cells resulted in increased CASP8AP2 expression and increased cell death. Addi-

tionally, knock-down of CASP8AP2 in non-preconditioned cells improved their

survival under anoxia (Kim et al. 2009). While stem cell survival has a clear

advantage in a transplantation environment, one would predict that increased

survival in tumour cells secondary to reduced CASP8APS would adversely affect

prognosis. Indeed, it has been shown that CASP8AP2 deletions in T-cell acute

lymphoblastic leukaemia correlate with poor early treatment response (Remke et al.

2009), and similar findings were made in acute lymphoblastic leukaemia (Flotho

et al. 2006).

8 Target Prediction

Accurate target prediction remains problematic and is one of the major factors

holding back research into miRNA function. Several bioinformatics methods

and algorithms have been suggested for target prediction (Barbato et al. 2009).

In general, these identify targets by searching for potential binding sites in the

30-UTR and other transcript regions. However, results from these algorithms pres-

ent large discrepancies, and accurate prediction of miRNA targets is still a chal-

lenging goal. These discrepancies are partially due to differences in the algorithms

and their implementation, and to different requirements for site conservation across

species. They are also due to the fact that there are different hypotheses on the

miRNA action on its target genes. For example, a recent study showed that targets

containing simultaneous 50- and 30-UTR miRNA interaction sites can identify

targets with higher expression modulation (Lee et al. 2009).

Due to these differences, considering predictions from multiple methods might

be more effective than focussing on one method, or considering only the overlapping

predictions from the different methods (Ritchie et al. 2010). In this respect, work

from our group (Buffa et al. in submission) employed a simple non-parametric

ranked score combining predictions from different algorithms. All predictions from

the considered methods are regarded as potential targets, but greater weight can be

assigned to targets predicted by more than one algorithm. Such a method allows

inclusion of other criteria for target selection; for example miRNA action at the

mRNA and protein level can be used as one of the criteria to select miRNA targets.

This has been shown in a recent study of miR-210 targets by Fasanaro et al. where

combined analysis of mRNA and protein expression changes after modulation of

miR-210 proved a good method to identify miR-210 targets (Fasanaro et al. 2009).
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Furthermore, combining miRNA expression and mRNA expression information

can be used to select potential targets using material from retrospective clinical

series (Buffa et al. in submission). Specifically, potential targets that have mRNA

levels inversely correlated to miRNA expression levels, are considered as having

the correct mRNA expression behaviour to be real targets. This method has been

recently applied to a large breast cancer dataset (N ¼ 219) and has identified the

iron–sulphur cluster scaffold homolog (ISCU, alias NIFU) as a miR-210 target

(Favaro et al. 2010), which was confirmed by experimental validation both in

cancer and normal tissues (Chan et al. 2009).

9 Future Clinical Applications of HRM Research

It is becoming clear that the roles of HRMs span a number of processes which

are relevant to both metabolic adaptation to hypoxia and oncogenesis. HRMs have

been shown to be involved in regulation of the well-described oncogene myc, in

addition to being implicated in the control of apoptosis, angiogenesis, erythroid

differentiation, DNA repair and mitochondrial metabolism. It is clear that differen-

tial regulation of miRNAs in hypoxia varies significantly between cell types, but

one, miR-210, stands out as the most ubiquitously upregulated miRNA across both

primary and tumour cell lines. This miRNA is upregulated in vivo and correlates

with poor prognosis in patients, in addition to correlating strongly with hypoxic

gene signatures. Our ability to detect miRNA in plasma, urine and tumour tissues

shows the potential of these molecules to act as predictors of survival or response to

oncological treatments.

It has already been demonstrated that injection of miRNA antagonists (antago-

Mirs) can deliver a therapeutic effect. For example, Esau et al. showed that

intravenous administration of anti-miR-122 in mice resulted in reduced plasma

cholesterol levels and increased fatty acid oxidation (Esau et al. 2006). As we learn

more about the biological functions of HRMs, these miRNAs may ultimately

prove useful as therapeutic targets themselves, alone or in conjunction with other

agents.
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Abstract Prolyl hydroxylase domain (PHD) proteins are cellular oxygen sensors

that orchestrate an adaptive response to hypoxia and oxidative stress, executed

by hypoxia-inducible factors (HIFs). By increasing oxygen supply, reducing oxy-

gen consumption, and reprogramming metabolism, the PHD/HIF pathway confers

tolerance towards hypoxic and oxidative stress. This review discusses the involve-

ment of the PHD/HIF response in two, at first sight, entirely distinct pathologies

with opposite outcome, i.e. cancer leading to cellular growth and neurodegenera-

tion resulting in cell death. However, these disorders share common mechanisms of
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sensing oxygen and oxidative stress. We will focus on how PHD/HIF signaling is

pathogenetically implicated in metabolic and vessel alterations in these diseases

and how manipulation of this pathway might offer novel treatment opportunities.

Abbreviations

AMPK Adenosine monophosphate-activated protein kinase

Ang2 Angiopoietin 2

BNIP3 Bcl-2/adenovirus E1B 19-kDa-interacting protein 3

Bv8 Bombina variagata peptide 8

CBP CREB-binding protein

CXCR4 CXC chemokine receptor 4

FDG-PET Fluoro deoxy glucose-positron emission tomography

FGF2 Fibroblast growth factor 2

Flt1 Fms-like tyrosine kinase 1

LDH Lactate dehydrogenase

LRP Low-density lipoprotein receptor-related protein

MMP9 Matrix metalloproteinase 9

mTOR (Mammalian) target of rapamycin

NF-kB Nuclear factor-kappaB

PDGF Platelet-derived growth factor

PDH Pyruvate dehydrogenase

PDK PDH kinase

PI3 Phosphatidylinositol 3

PlGF Placental growth factor

PTEN Phosphatase and tensin homologue deleted on chromosome ten

PUMA p53 up-regulated modulator of apoptosis

SDF-1 Stromal-derived factor 1

TCA Tricyclic acid

uPAR Urokinase-type plasminogen activator receptor

VEGFR2 Vascular endothelial growth factor receptor 2

1 Introduction

Since the appearance of oxygen in the atmosphere billions of years ago, eukar-

yotic life has become critically dependent on aerobic metabolism (Semenza 2007).

Molecular oxygen (O2) serves as terminal electron acceptor in a process referred to

as oxidative phosphorylation, providing the cell with a highly efficient means of

energy production. However, given the reactive nature of oxygen, mitochondrial

oxidative metabolism exposes the cell also to the threat of reactive oxygen species

(ROS). Both decreased oxygen levels (hypoxia) and oxidative stress, resulting from
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excessive ROS generation, posed some of the greatest evolutionary challenges for

aerobic life (Taylor and Pouyssegur 2007). Therefore, oxygen-consuming organ-

isms have developed a variety of oxygen sensing and adaptive systems, allowing a

tightly regulated oxygen homeostasis. Mammalian cells are equipped with an

oxygen sensor class of 2-oxoglutarate dependent iron(ii)-dioxygenases consisting

of three different forms of prolyl hydroxylase domain proteins (PHD1-3) and a

single asparaginyl hydroxylase, called factor inhibiting HIF (FIH) (Kaelin and

Ratcliffe 2008). These oxygen sensors direct the accumulation and activation of

the hypoxia-inducible transcription factors (HIF-1a, -2a and -3a), acting as master

switches of the hypoxia transcriptional response (Kaelin and Ratcliffe 2008).

This endogenous protective mechanism has received great medical attention in

recent years as hypoxia-related stress and deregulated oxygen homeostasis are

commonly implicated in diverse disease states, with cancer and neurodegeneration

being the scope of our review. These two different disease processes are character-

ized by a fundamentally opposing cell fate: whereas a tumor represents an uncon-

trolled cell proliferation escaping tissue homeostasis, neurodegenerative disorders

refer to a progressive dysfunction and dying of selective neuronal subpopulations.

However, these pathologies share an intriguing overlap in how their disease course

is affected by hypoxia signaling. We will first describe the evidence for the role of

hypoxia in the pathogenesis of both diseases, and then discuss the molecular

mediators of the cellular hypoxic response as well as their biological role in both

cancer and neurodegeneration. As cellular oxygen levels result from the balance

between oxygen supply and consumption, we will further focus on the link between

hypoxia, hypoxia signaling, blood vessels, and cellular metabolism in these dis-

eases. We will illustrate how deciphering this link may yield new insights in the

molecular etiology and offer potential therapeutic targets as well.

2 Hypoxia in Disease

2.1 Hypoxia in Cancer

Hypoxia is a well-established feature of nearly all solid tumors (Bertout et al. 2008).

Tumor cells grow in multiple layers around blood vessels, resulting in a spatially

highly heterogeneous distribution of oxygen levels within the tumor microenviron-

ment (Fig. 1). Cells located at a distance of more than 100–200 mm away from blood

vessels, which corresponds to the distance limit in oxygen diffusion (Gatenby and

Gillies 2004; Helmlinger et al. 1997), suffer life threatening low amounts of oxygen,

which may lead to necrotic tumor areas. The rapidly expanding tumor mass is craving

for oxygen and therefore induces the formation of new blood vessels. Tumor

angiogenesis can, however, not keep up with the increased oxygen demand and

tumor cells often outgrow their vascular supply, resulting in a so-called “diffusion-

limited hypoxia” (Harris 2002; Vaupel andMayer 2007). Additionally, newly formed
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tumor vessels are chaotically organized, immature and unstable (Fig. 1), leading to

hypoperfusion and poor oxygenation; the interstitial hypertension due to the abnor-

mal vessel leakiness induces tumor vessel collapse, thereby further enforcing hypo-

perfusion (Carmeliet and Jain 2000; Jain 2005). Moreover, sudden perfusion changes

because of transiently occluded and reperfused vessels and abnormal rheology

of hyperviscous blood give rise to an excessive generation of ROS (Dewhirst et al.

2008; Guzy and Schumacker 2006). This inefficient oxygenation is referred to as

“perfusion-limited hypoxia” (Harris 2002; Vaupel and Mayer 2007).

Hypoxia is almost dogmatically expected to limit tumor growth. Nevertheless, a

large amount of clinical and experimental evidence shows that poorly oxygenated

tumors display a more malignant phenotype characterized by invasiveness, meta-

stasis, hypoxia tolerance, and angiogenesis (Bertout et al. 2008; Brown and Wilson

2004) with poor treatment response and worse prognosis (Vaupel and Mayer 2007;

Wouters et al. 2004). As we will outline later, exploitation of the cellular adaptive

responses to hypoxia underlies this aggressive tumor behavior.

2.2 Hypoxia in Neurodegeneration

The brain is particularly sensitive to hypoxia and oxidative stress (Acker and Acker

2004). This vulnerability is mainly due to the extraordinary metabolic requirements

of normally functioning neurons. Vital neuronal processes such as neurotransmission

a

b

Fig. 1 Hypoxia and perfusion in a tumor. Tumor cells become hypoxic as they outgrow their blood

supply. This “diffusion-limited hypoxia” drives an excessive angiogenic response, which results in

a disorganized, highly abnormal vasculature. Scanning electron microscopy (a) and whole mount

tumor sections for CD31 (b; in red) illustrate the hyperactive, pseudostratified and discontinuous

tumor vasculature, further compromising vessel perfusion, referred to as “perfusion-limited

hypoxia”. Figure (a and b) reprinted from (Mazzone et al. 2009), with permission from Elsevier
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and ion homeostasis are critically depending on a continuous oxygen and glucose

supply (Acker and Acker 2004). An intimate structural and functional interaction

between endothelial cells, pericytes, glia and neurons – coined the blood–brain

barrier (BBB) in the neurovascular unit – serves a neurovascular crosstalk, allowing

the nervous system to match blood supply to the changing neuronal energy needs

(Iadecola 2004; Iadecola and Nedergaard 2007; Zlokovic 2008). The homeostasis of

the cerebral microenvironment is maintained through a tightly sealed endothelial

layer that limits free transport of molecules across the BBB. Any cerebrovascular

deficit or neurovascular uncoupling, even subtle in nature, may therefore lead to

metabolic deregulation, ultimately progressing to metabolic collapse and neuronal

death (Iadecola 2004). Oxygen radicals are highly reactive species that are generated

as normal byproducts of mitochondrial oxidative metabolism (Kulkarni et al. 2007).

In physiological conditions, antioxidant enzymes keep their levels in check. Hypoxia

may cause oxidative stress, as mitochondria generate more ROS in hypoxic condi-

tions (Guzy and Schumacker 2006). Given the limited antioxidant defense mechan-

isms, especially in the brain, excessive ROS formation can result in oxidative damage

due to peroxidation of proteins, lipids, RNA, and DNA (Andersen 2004; Kulkarni

et al. 2007).

Hence, both perfusion deficits and oxidative stress are important mediators of

neuronal dysfunction and death. Not surprisingly, vascular abnormalities, neuro-

vascular uncoupling and free radical injury have been observed in the neurodegen-

erative brain (Andersen 2004; Segura et al. 2009; Storkebaum and Carmeliet 2004;

Zlokovic 2008). Where these processes should be situated in the chain of pathologic

events, i.e. whether they are cause or consequence, remains an outstanding debated

question. However, the evidence for vessels and metabolism as active contributors

to progressive neuronal degeneration is ever rising, setting the scene for exploring

the role of hypoxia signaling in neurodegenerative disorders.

3 Hypoxia Signaling Pathways

3.1 The Molecular Players of Hypoxia Signaling

Molecular oxygen represents a vital source of energy for most eukaryotic organ-

isms. During embryonic development as well as in various (patho)-physiological

conditions, cells are often exposed to varying oxygen levels. Mammalian organisms

are thus equipped with intricate oxygen sensing mechanisms instructing a variety of

adaptive responses, in an attempt to maintain their energetic balance. In this review,

we will focus on the prolyl hydroxylase domain proteins (PHD1-3) and factor

inhibiting HIF (FIH) (Aragones et al. 2009; Kaelin and Ratcliffe 2008). These

cellular oxygen sensors activate in an oxygen-dependent manner a major transcrip-

tional pathway governed by the hypoxia-inducible factors, allowing the cell to

transduce oxygen levels to adaptive gene expression. The prolyl hydroxylase domain
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proteins (PHDs) hydroxylate specific proline residues of HIFa, which are recognized
by the Von Hippel Lindau (VHL) protein. The latter recruits an ubiquitin ligase

complex, targeting HIFa for proteosomal degradation (Kaelin and Ratcliffe 2008;

Schofield and Ratcliffe 2004). FIH carries out the hydroxylation of a specific

asparagine residue, interfering with the recruitment of essential transcriptional

co-activators such as p300 and CBP (Kaelin and Ratcliffe 2008; Schofield and

Ratcliffe 2004). PHDs and FIH act as bona fide oxygen sensors because they use

molecular oxygen, besides 2-oxoglutarate, as substrate in the hydroxylation reaction.

Consequently, when oxygen levels drop, these oxygen sensors start to lose their

activity. This results in accumulation and transcriptional activation of HIFa in a

complex with its constitutively expressed counterpart HIFb, binding at the hypoxia-
response element (HRE) in the promoter of numerous genes (Semenza 2003).

To provide the necessary fine-tuning of the hypoxia response and shape a cellular

outcome suited for the varying contexts of severity and duration of the hypoxic

stimulus, the PHD/HIF pathway exhibits a high degree of flexibility and complexity

(Lendahl et al. 2009). This diversity is in part achieved by the differing oxygen affi-

nities of PHDs and FIH, and the specific transcriptional programs induced by eachHIF

isoform (Kaelin and Ratcliffe 2008). In addition, HIF-independent targets of PHDs

are being increasingly identified, among which members of the canonical NF-kB
activation pathway (Chan et al. 2009; Cummins et al. 2006; Xue et al. 2010), Notch

(Coleman et al. 2007; Zheng et al. 2008), RNApolymerase II (Mikhaylova et al. 2008)

and others. Moreover, there is emerging evidence for an intimate crosstalk of the

PHD/FIH/HIF pathway with other major gene regulatory pathways, intersecting with

diverse biological processes, such as with nutrient metabolism via regulation of

AMPK, with protein synthesis, folding and degradation via effects on mTOR and

the unfolded protein response (Wouters and Koritzinsky 2008), with apoptosis and

cell survival via p53 (Xenaki et al. 2008), and many others. Finally, another level of

complexity is added by the posttranslational modifications of HIF, as well as tran-

scriptional regulation by microRNA and epigenetic factors (Lendahl et al. 2009).

In vertebrates, an elaborate vessel network conducts oxygen and glucose

to every cell, where these energy substrates enter the metabolic process of ATP

generation. Obviously, any disturbance in vascular supply or cellular metabolism

will threat the energy homeostasis and trigger adaptive processes adjusting oxygen

supply to its demand and vice versa (Aragones et al. 2009). PHD signaling as

described above enables hypoxic cells to survive and function by initiating pro-

grams that enhance oxygen supply via “cell extrinsic” mechanisms on one hand,

and that reduce energy expenditure and oxygen consumption via “cell intrinsic”

mechanisms on the other hand (Aragones et al. 2009) (Fig. 2).

3.2 Hypoxia Signaling in Cancer

Both HIF-1a and HIF-2a have been implicated in the hypoxia response of tumors,

providing cancer cells a survival advantage in conditions of varying oxygen levels
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(Brown and Wilson 2004; Harris 2002; Pouyssegur et al. 2006; Rankin and Giaccia

2008; Semenza 2003). Consistent with this note, HIF-1a and HIF-2a levels are

upregulated in several tumor specimens and associate with a poor prognosis

and therapy resistance (Rankin and Giaccia 2008; Semenza 2010a; Sullivan and

Graham 2009). Although the majority of research supports a tumor promoting

function of both HIF isoforms, accumulating evidence also points to a tumor-

suppressive role depending on the tumor context and cell type (Rankin and Giaccia

2008). For instance, HIF-1a deficiency in embryonic stem cells protects cells from

hypoxia-induced apoptosis and accelerates tumor growth (Carmeliet et al. 1998).

Similarly, HIF-2a-overexpressing glioblastoma tumors display reduced tumor

growth and increased apoptosis (Acker et al. 2005).

The role of the cellular oxygen sensors in tumor physiology has been less

extensively studied so far and remains incompletely understood. As negative

regulators of HIFs, PHDs are expected to act as tumor suppressors. Accordingly,

PHD activity is reduced in several tumor cell lines (Calvisi et al. 2007; Chan et al.

2002; Kato et al. 2006; Knowles et al. 2003). Increased PHD expression levels

are reported by some (Couvelard et al. 2008; Jokilehto et al. 2006), but not by all

groups (Yan et al. 2009b). In some studies, elevated PHD2 levels correlate with

tumor aggressiveness (Couvelard et al. 2008; Jokilehto et al. 2006) and radiation

resistance (Luukkaa et al. 2009). Others document that PHD2 inhibition causes

chemoresistance due to HIF-1a induced expression of the multi-drug resistance

gene (Brokers et al. 2010) and promotes tumor growth through HIF-independent

effects on NF-kB (Chan et al. 2009), while PHD activation impairs tumor growth

(Matsumoto et al. 2009; Qi et al. 2008; Tennant et al. 2009). As a HIF-target, PHD2

is involved in a negative feedback loop to avoid overactivation of HIFs in the

hypoxic tumor microenvironment (Henze et al. 2010; Marxsen et al. 2004; Metzen

et al. 2003), providing an explanation for the discrepancy between PHD activity and

expression levels. Furthermore, a biphasic role of PHD2, with a tumorigenic effect

Fig. 2 Vascular and metabolic in- and output of the PHD cascade. Many physiological and

pathological conditions are associated with an imbalance between oxygen supply and consump-

tion. The PHD molecules will sense the resulting hypoxia and induce an adaptive feedback at

the level of vessels and cellular metabolism by increasing oxygen supply and reducing oxygen

consumption respectively, in order to restore oxygen homeostasis
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depending on its level, was recently suggested, underscoring the complex conse-

quences of PHD activity in tumor cells (Lee et al. 2008). The role of the other PHDs

has been even less well studied, but may be non-overlapping. For instance, PHD1

inhibition impedes tumor breast cell proliferation through cyclin D1 expression

(Zhang et al. 2009). PHD3 seems to counteract the tumor-suppressive activity of

HIFs in glioma models (Henze et al. 2010). In colorectal cancer, by contrast,

downregulated PHD3 levels associate with malignant behavior (Xue et al. 2010).

These results suggest that the overall cancer activity of PHDs is contextual and

dependent on the type, stage, and treatment response of tumors.

Genetic alterations in the hypoxia pathway also drive expression of HIF target

genes. For instance, in Von Hippel Lindau (VHL) disease, a hereditary cancer

syndrome caused by germline mutations in the VHL gene, normoxic degradation of

HIFa is blocked. The accumulating HIF levels result in the development of highly

vascularized tumors (Kaelin 2008). Loss of function mutations in PHD2 also cause

tumorigenesis (Kato et al. 2006). Additionally, activation of oncogenes and loss of

tumor suppressors functioning in growth factor signaling pathways contribute to

HIF-driven gene expression as well, mainly through increased HIF-1 synthesis

(Semenza 2003, 2010a). Taken together, the hypoxia response is a crucial mediator

of tumor malignancy.

3.3 Hypoxia Signaling in Neurodegeneration: Lessons from
Hypoxic Preconditioning and Ischemic Tolerance

Hypoxia and oxidative stress can, when prolonged and severe, result in neuronal

death. However, it has been known for some time that exposing the brain to a

controlled stressful stimulus, such as oxygen deprivation, to an extent that neuronal

function is slightly impaired, yet not irreversibly damaged, elicits a protective

response. In this way, the brain acquires a state of ischemic or hypoxia tolerance

and will be protected against a subsequent lethal stimulus (Gidday 2006). This

phenomenon is known as ischemic brain preconditioning and has been documented

in other organs as well. This concept is of great medical interest as it might prove a

preventive strategy in high-risk conditions for cerebrovascular disease such as

a transient ischemic attack or subarachnoid hemorrhage (Dirnagl et al. 2009). At

a first glance, hypoxic preconditioning is not implicated in the field of neurodegen-

erative disorders given the chronic nature of the latter. Nevertheless, an in-depth

molecular understanding of preconditioning may allow the identification of novel

neuroprotective players, which could represent attractive disease candidates in

neurodegeneration. Moreover, stroke and neurodegenerative diseases share com-

mon pathophysiological processes preceding neuronal death.

A preconditioning, non-lethal, stimulus is known to profoundly alter transcrip-

tional output in the brain (Bernaudin et al. 2002; Stenzel-Poore et al. 2003). The

HIF family represents one of the most studied hypoxia-sensitive transcription

factors involved in this genetic reprogramming (Correia and Moreira 2010; Harten
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et al. 2010). Both in vitro and in vivo studies show increased levels of HIF-1a and

its downstream targets VEGF, erythropoietin and glycolytic enzymes upon expo-

sure to cellular stress (Baranova et al. 2007; Sharp and Bernaudin 2004). Given the

well-documented neurotrophic effects of the effector molecules VEGF (Ruiz de

Almodovar et al. 2009) and erythropoietin (Brines and Cerami 2005), HIF-1a is

arguably pinpointed as moderator of neuroprotection. Further in vivo characteriza-

tion of the role of HIF-1a in acute cerebral ischemia yields, however, conflicting

data (Baranova et al. 2007; Chen et al. 2009a; Helton et al. 2005). Pharmacological

manipulation of HIF-1a also demonstrates diverging effects on stroke outcome

(Baranova et al. 2007; Chen et al. 2008, 2009a; Ratan et al. 2008; Siddiq et al. 2005;

Zhou et al. 2008). This may be related to the dual activity of HIF-1a, which not only
activates survival-promoting pathways, but also triggers pro-apoptotic proteins

such as BNIP3 and PUMA (Chen et al. 2009b). Similar to the diverging role of

HIF-1a in cancer, the overall effect of HIF-1a on neuronal cell fate appears to be

context specific.

As HIF-1a levels are importantly regulated by the activity of the PHDs, inhibi-

tion of PHDs has become an attractive strategy in preconditioning therapy. Current

available PHD inhibitors act as iron chelators or 2-oxoglutarate analogs, depleting

the enzyme cofactor iron or competing with its cosubstrate 2-oxoglutarate, respec-

tively (Fraisl et al. 2009). The neuroprotective effects of these agents have been

validated in preclinical stroke models (Baranova et al. 2007; Freret et al. 2006;

Li et al. 2008; Sharp and Bernaudin 2004; Siddiq et al. 2005), with substantial evi-

dence for a, at least partly, HIF-1a-mediated effect (Baranova et al. 2007; Hamrick

et al. 2005).

Inspired by the neuroprotective role of the PHD/HIF pathway in brain precon-

ditioning and ischemic tolerance, PHD inhibitors are assessed as treatment design

for neurodegenerative disorders as well. Already in 1991, clinical efficacy of iron

chelators was tested in AD patients (Crapper McLachlan et al. 1991). Desferriox-

amine, another iron chelator, was reported to slow down neurodegeneration in

rodent models of Parkinson’s disease (Ben-Shachar et al. 1991; Lan and Jiang

1997). Only recently, novel iron chelating drugs were assessed in ALS and resulted

in a survival advantage in mutant SOD1 mice (Kupershmidt et al. 2009). The lack

of specificity limits the therapeutic utility of the current PHD inhibitors and con-

founds the role of specific PHD isoforms in neurodegeneration. While gene deletion

and transient knockdown studies of PHD1 in skeletal muscle and liver, and of

PHD2 in heart show protection against ischemic injury (Aragones et al. 2008; Eckle

et al. 2008; Hyvarinen et al. 2010; Schneider et al. 2009), the isoform-specific role

of PHDs in different neural cell types in the context of neurodegeneration remains

to be largely explored. So far, a single in vitro study implicated PHD1 in the

neuroprotective response to oxidative stress (Siddiq et al. 2009). Obviously, com-

plementing in vivo analyses are warranted to unravel the disease- and cell-specific

role of PHDs in neurodegenerative disorders.

Taken together, hypoxia elicits through activation of the PHD/HIF pathway a

transcriptional response, which both in the brain as in a tumor generally confers

protection against hypoxic stress, though context-dependent divergent effects
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have been documented as well. The broad variety of biological processes involved

in this adaptive response ranges from angiogenesis, metabolism, apoptosis, cell

stem physiology, inflammation, autophagy, endoplasmatic reticulum stress, pro-

teosomal homeostasis, etc. Interestingly, each of these processes has been impli-

cated in the pathogenesis of cancer and neurodegenerative disorders. Thus, an

extensive intersection with the hypoxia signaling machinery emerges at the level

of several pathobiological events, representing an intriguing overlap of these

divergent disease states. With oxygen delivery and consumption as ultimate

determinants of the hypoxia response, we will limit our further discussion to the

contribution of vessel and metabolic alterations to the pathogenesis of cancer and

neurodegeneration, in particular highlighting the involvement of hypoxia and the

PHD/HIF pathway.

4 Angiogenesis

4.1 Angiogenesis in Cancer: Targeting Vessel Numbers
or Endothelial Shape?

The ability to instruct the formation of new blood vessels is a prerequisite for cancer

to manifest as an aggressively expanding and infiltrating cell mass (Hanahan and

Weinberg 2000). Hypoxia strongly triggers the “angiogenic switch” during tumor-

igenesis by inducing the expression of numerous angiogenic cytokines, in an

attempt to meet the increasing oxygen and nutritional need of the highly metabolic

tumor (Carmeliet and Jain 2000; Hanahan and Folkman 1996). Furthermore, direct

or indirect activation of HIFs by oncogenes or pro-tumorigenic signaling pathways

additionally drives the “angiogenic switch” (Carmeliet and Jain 2000). Importantly,

however, and somewhat paradoxically, such excessive release of pro-angiogenic

factors in cancer generates highly abnormal, disorganized, immature tumor vessels

(Greenberg et al. 2008; Jain 2005), that impair perfusion, thereby further aggravating

tumor hypoxia and fueling a self-reinforcing vicious cycle of a non-productive

angiogenic response (Fig. 3).

Based on the presumption that tumors require blood supply to grow, efforts have

been undertaken to block this supply as maximally as possible, with the hope to

eradicate hereby the tumor by starving it to death (Folkman 1971). Today, anti-

angiogenic drugs of the VEGF signaling pathway are most widely used in clinical

oncology practice (Ellis and Hicklin 2008; Folkman 2007). Despite successes, the

tumor suppressive effect of anti-angiogenic therapy often appears short-lived,

translating in an overall modest effect on progression-free and overall survival for

several cancers (Bergers and Hanahan 2008). This transitory efficacy suggests that

anti-VEGF therapy inflicts adaptive responses in the tumor and surrounding stromal

cells. Various molecular and cellular mechanisms have been implicated as possible

causes to explain this evasive treatment resistance (Bergers and Hanahan 2008;
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Carmeliet 2005; Loges et al. 2009). We will here discuss how the hypoxia response

may contribute to this process.

Blocking VEGF signaling inhibits neoangiogenesis and prunes existing vessels,

leading to a decline of tumor oxygen levels (Franco et al. 2006). By inducing

hypoxia, anti-angiogenic agents can thus select hypoxia resistant and intrinsically

more malignant tumor clones (Graeber et al. 1996; Yu et al. 2002). Additionally,

hypoxia-driven expression of other pro-angiogenic factors such as Ang2, PDFG-A,

FGF2, and PlGF upon anti-VEGF treatment results in tumor revascularization

(Casanovas et al. 2005; Fernando et al. 2008). The recruitment of pro-angiogenic

myeloid cells to the hypoxic tumor environment, in part resulting from HIF-

upregulated SDF-1 levels, further contributes to this mechanism of resistance

(Du et al. 2008; Shaked et al. 2006). Thus, hypoxia signaling has a central role in

driving the secondary wave of angiogenesis that is iatrogenically induced and may

limit the success of the initial anti-angiogenic treatment strategy. Alternative

angiogenesis signaling circuitries, many of which are induced by hypoxia, are

therefore currently receiving attention as they represent attractive novel targets

for anti-angiogenic therapy: amongst those are antibodies targeted against Bv8,

neuropilin-1, PlGF, PDGF-C, and others (Crawford et al. 2009; Fischer et al. 2008;

Fig. 3 Endothelial PHD2 deficiency mediates endothelial normalization in tumor vessels.

(a) Hypoxia in a tumor induces the HIF-driven expression of genes that promote angiogenesis

and metastasis. The excessive release of angiogenic cytokines results in tumor vessel abnormali-

zation and dysfunctional perfusion, reinforcing tumor hypoxia. (b) In mice lacking one allele of

PHD2 in endothelial cells, the endothelial phenotype is directed towards the “phalanx cell”,

resulting in a tightly aligned, quiescent endothelial layer. The improved perfusion that goes

along with endothelial normalization will alleviate tumor hypoxia, attenuating HIF-driven

expression of angiogenic and prometastatic genes
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Folkman 2007). Whether combining anti-angiogenic strategies may overcome

treatment resistance remains clinically largely unanswered.

Besides stimulating tumor revascularization, hypoxia in response to anti-angio-

genic therapy may also incite two other processes, i.e. tumor cell invasiveness and

metastasis, that may ultimately cause much greater challenges to resolve therapeu-

tically (Bergers and Hanahan 2008). Two recent studies documented increased

invasiveness and metastatic disease upon pharmacological or genetic abrogation

of VEGF signaling in distinct mouse models (Ebos et al. 2009; Paez-Ribes et al.

2009). Anti-VEGF treatment has also been found to induce pro-metastatic genes

such as SDF-1 and CXCR4 (Xu et al. 2009). The question to what extent these

preclinical findings are either due to experimental conditions or are clinically

relevant is not easily addressed, considering other evidence for a suppressive effect

of VEGF-inhibitors on metastasis (Crawford and Ferrara 2009). At least in glio-

blastoma multiforme, multifocal recurrence was observed in some studies upon

anti-VEGF therapy (Narayana et al. 2009; Norden et al. 2008; Zuniga et al. 2009).

Regardless of these outstanding questions, it is worthwhile noting that, even though

tumor cells have acquired means to survive severe hypoxic stress conditions,

oxygen levels may be extremely low inside the tumor stroma, approaching anoxia.

This hostile oxygen-deprived microenvironment forces tumor cells to escape,

resulting in increased invasiveness and metastasis. Emerging evidence indicates

that hypoxia signaling may represent an important molecular signature of this

invasive/metastatic tumor phenotype. Indeed, hypoxia fuels infiltrative and meta-

static tumor cell behavior at different biological levels. Stimulation of the epithelial

to mesenchymal transition, expression of the hepatocyte growth factor receptor

c-Met, MMP9, uPAR are only a fewmolecular examples that constitute the dynamic

link between hypoxia, HIF-mediated expression and invasiveness (Loges et al.

2009; Pouyssegur et al. 2006; Sullivan and Graham 2007). To which extent the

hypoxia response actually contributes to the exacerbated invasive and metastatic

behavior upon VEGF inhibition in cancer remains to be further explored.

Recent genetic studies yielded insights that targeting a key oxygen-sensing

mechanism whereby endothelial cells regulate their ancient function to secure

oxygen supply and organ perfusion may provide alternative anti-vascular strategies

to combat cancer (Mazzone et al. 2009) (Fig. 3). This strategy relies on targeting the

endothelial shape rather than the numbers of tumor vessels. Indeed, in tumor-

bearing mice lacking a single PHD2 allele in endothelial cells, the endothelial

layer in tumor vessels appeared more regular, tight and quiescent, and was sur-

rounded by pericytes and a basement membrane, all together improving vessel

stability and maturation, and leading to increased blood conduction. Importantly,

invasive growth and metastasis were significantly impeded. This less malignant

phenotype results in part from an improved barrier function of the endothelial layer,

preventing the escape of tumor cells towards the vascular lumen, together with an

alleviated hypoxia-driven genetic program. Notably, the microvessel density was

unchanged, calling into question the relevance of using microvascular density as

sole biomarker of tumor angiogenesis. At the cellular level, tumor vessel normali-

zation was mediated by a change of endothelial cells to a phalanx phenotype,
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a quiescent non-proliferating and non-migrating endothelial cell aligned in a

tight cobblestone layer (Mazzone et al. 2009). Upregulated levels of soluble Flt1

(a VEGF trap) and the junctional molecule VE-cadherin, known to decrease

endothelial permeability and VEGF-mediated responses, counteract the abnorma-

lizing effects of VEGF on the tumor vasculature (Mazzone et al. 2009).

4.2 Angiogenesis in Neurodegeneration: Hypoxia and
Neurovascular Dysfunction

In many neurodegenerative diseases, vessel defects and anomalies have been

documented (Storkebaum and Carmeliet 2004). Whether these vascular alterations

play an active role in the pathogenesis as initiators or as modifiers has, however, not

been extensively addressed. We will envision to what extent hypoxia, deregulated

hypoxia signaling and vascular defects act as pathological insults to the neurovas-

cular unit in two common neurodegenerative disorders, i.e. amyotrophic lateral

sclerosis and Alzheimer’s disease, and will speculate briefly about the therapeutic

potential of targeting the PHD pathway for treatment of cerebrovascular dysregula-

tion in neurodegeneration.

4.2.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is characterized by a fairly selective degener-

ation of motor neurons in the motor cortex, brainstem and spinal cord and results in

death on average within 3–5 years due to respiratory failure (Rowland and Shneider

2001). Unfortunately, current clinical practice offers no satisfying impact on

disease course, which is mainly due to our poor understanding of the biology of

motor neuron death. Chronic vascular insufficiency was implicated rather unex-

pectedly in this disease. Genetically engineered mice with a deletion of the hyp-

oxia-response element in the VEGF promoter, resulting in a 25–40% decrease in

VEGF levels, the so-called VEGF∂/∂ mice, exhibited a slowly progressive motor

neuron disease, reminiscent of ALS in humans (Oosthuyse et al. 2001) (Fig. 4).

Besides neural hypoperfusion, an insufficient VEGF-dependent neuroprotection

was postulated to contribute. Neuronal overexpressing of VEGFR2 (Storkebaum

et al. 2005) and VEGF (Wang et al. 2007) has indeed been shown to improve the

motor phenotype of mutant SOD1 mice, a preclinical model of ALS. Because of its

pleiotropic multitasking effects in the nervous system, VEGF is designated as one

of the prototypic angioneurins (Zacchigna et al. 2008). Human genetic studies in

several populations confirmed an involvement of low VEGF levels in the develop-

ment of ALS. In a recent meta-analysis, homozygous carriers of a particular risk

VEGF allele, associated with reduced VEGF expression levels, display an

increased susceptibility to ALS (Lambrechts et al. 2009). Additional support for
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the relevance of VEGF in human disease comes from studies showing decreased

VEGF levels in the cerebrospinal fluids of ALS patients (Devos et al. 2004).

A possible involvement of PHD/HIF signaling in deficient VEGF expression and

ALS has not been addressed extensively so far. Yet, (pre)clinical evidence suggests a

deregulated hypoxia response (Fig. 4). In the mutant SOD1 mouse model, there is

insufficient upregulation of VEGF levels in hypoxic conditions (Murakami et al.

2003). Similar observations were made in hypoxic ALS patients (Just et al. 2007;

Moreau et al. 2006, 2009). Also, angiogenin, another hypoxia-inducible angioneurin,

has been genetically implicated in familial and sporadic ALS cases (Greenway et al.

2006) and was found to protect neurons against hypoxic injury (Sebastia et al. 2009).

Evaluation of the therapeutic potential of VEGF administration revealed that both

intramuscular viral VEGF gene transfer with subsequent retrograde axonal transport

of the viral vector as well as intracerebroventricular VEGF protein delivery improve

the motor phenotype of SOD1 mice and rats (Azzouz et al. 2004; Storkebaum

et al. 2005). A clinical trial assessing the safety of intracerebroventricular VEGF

a b c

Fig. 4 Blunted hypoxia response in motor neuron disease. (a) In healthy conditions, the CNS will

upon limited oxygen availability accumulate HIF, which will bind to a HRE in the promoter

of the VEGF gene. VEGF maintains neural perfusion and provides neurotrophic support to the

motor neurons, stimulating their survival. (b) In the VEGF∂/∂ mouse, the hypoxic upregulation of

VEGF in the CNS is blunted due to a genetic deletion in the HRE of the VEGF gene. Insufficient

neural perfusion and neurotrophic support are likely contributive to the resulting motor neuron

degeneration. (c) Both in human ALS and in the SOD1 mouse model, emerging evidence

points to a deregulated hypoxia response as VEGF levels are reduced in hypoxic conditions.

(CNS central nervous system, HRE hypoxia-response element, SOD1 superoxide dismutase 1,MN
motor neuron)
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administration is currently ongoing. So far, these studies have resulted in the recog-

nition of VEGF as an orphan drug for ALS patients.

Interestingly, another type of vascular defects, i.e. blood spinal cord barrier

defects were demonstrated in a mutant SOD1 mouse model, before apparent

signs of motor neuron degeneration (Garbuzova-Davis et al. 2007; Zhong et al.

2008). Knockdown of mutant SOD1 in endothelial cells reduced pathological BBB

permeability, although there was no significant improvement of the phenotype

(Zhong et al. 2009).

Thus, whereas excessive secretion of VEGF characterizes many cancers, insuf-

ficient VEGF signaling causes and contributes to neurodegeneration. An outstand-

ing question in this regard is whether VEGF-inhibitors used as cancer therapeutics

might promote or aggravate neurodegeneration. Indeed, a recent case report

described oculomotor nerve palsy after intravitreal administration of VEGF target-

ing therapy (Micieli et al. 2009). Also, stroke-like lesions with diffusion restriction,

necrosis and HIF-1a upregulation were induced by an anti-VEGF antibody within

the previously enhancing tumor area in glioma patients receiving anti-angiogenic

therapy (Rieger et al. 2009). Neurotoxic effects have been documented in the retina

in some but not in all reports (Nishijima et al. 2007; Saint-Geniez et al. 2008).

4.2.2 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, affect-

ing more than 30 million people worldwide and is characterized by a slowly but

relentlessly progressive cognitive decline. Although synaptic dysfunction and neu-

ronal loss is generally accepted to underlie memory loss, cerebrovascular lesions

have been frequently documented in AD (Smith and Greenberg 2009; Zlokovic

2005). In fact, early last century, Alois Alzheimer himself observed vessel abnorm-

alities in the brains of AD patients. We will dissect this complex neurovascular

interplay in two directions, i.e. how Ab induces vascular anomalies and, con-

versely, how cerebrovascular dysfunction can contribute to neurodegeneration.

The amyloid b-peptide (Ab) is considered as central actor in the pathogenesis

of AD. Ab is generated upon sequential cleavage of amyloid precursor protein

(APP) by the b-site of APP cleaving enzyme (BACE) and the g secretase complex

(Haass and Selkoe 2007). In the normal brain, accumulation of Ab is prevented

by clearance towards the vascular compartment (Tanzi et al. 2004). An imbalance

between production and degradation, as is believed to occur in AD patients,

increases Ab levels resulting in aggregate formation in the interneuronal paren-

chyme. Interestingly, Ab is also deposited in the wall of small brain arteries, a

condition known as cerebral amyloid angiopathy (CAA) (Greenberg et al. 2004).

The latter correlates to a broad variety of clinical phenotypes, ranging from micro-

infarction, cerebral hemorrhages due to vascular rupture and notably, cognitive

deterioration (Greenberg et al. 2004). Besides the possible exacerbation of neuronal

dysfunction in AD through microinfarction and hemorrhages (Smith and Greenberg

2009), vascular amyloid interferes with the dynamic adaptation of cerebral blood
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flow to regional metabolic needs (Iadecola et al. 1999; Niwa et al. 2000). Ab has

been known for some time to act as a vasoconstrictive agent (Thomas et al. 1996).

Endothelium-mediated production of ROS is thought to account for this disturbed

vascular reactivity (Park et al. 2005). Clinical imaging studies in early symptomatic

AD patients reveal a mismatch in blood flow with brain metabolism (Bookheimer

et al. 2000), further substantiating the evidence for cerebrovascular dysregulation

and neurovascular uncoupling early in disease.

Vascular amyloid not only disturbs vessel reactivity but also compromises the

structural integrity of the vasculature. Consistent with this note, microvessel density

is reduced in AD brains (Smith and Greenberg 2009). Functional imaging in AD

patients additionally confirms a cerebral hypoperfusion early in disease (de la Torre

2004). One would expect that the impaired oxygenation elicits adaptive angiogenic

responses. Indeed, some groups reported upregulation of VEGF in AD (Chiappelli

et al. 2006; Tarkowski et al. 2002). Nonetheless, this protective growth factor

signaling might be counteracted or overwhelmed by Ab, which has reportedly

anti-angiogenic activity (Paris et al. 2004a, b). Furthermore, Ab interacts with

VEGFR2, which is believed to account for the VEGF blocking effect and impair-

ment of the protective VEGF signaling (Patel et al. 2010). Further study is required

to define the role of VEGF and insufficient angiogenic signaling in the AD brain.

Taken together, Ab affects vascular function, integrity and remodeling.

Hypoxia and cerebrovascular dysfunction may also trigger AD pathology. Epi-

demiologically, there is a well-established association between hypoxic conditions

such as stroke and cardiovascular risk factors and the development of AD (de la

Torre 2004). In line with this observation, atherosclerosis is more pronounced in

large vessels from AD patients (de la Torre 2004). At the molecular level, we are

only starting to understand how hypoxia influences Ab production and clearance.

Exposing rodent brain to transient or prolonged ischemia increases Ab levels

(Iadecola 2004; Sun et al. 2006; Zhang et al. 2007). Hypoxia enhances the expres-

sion of BACE (Guglielmotto et al. 2009; Sun et al. 2006; Zhang et al. 2007) and

APH-1A, a subunit of the g secretase complex (Li et al. 2009; Wang et al. 2006).

Interestingly, a hypoxia-response element is present in the promoters of BACE and

APH-1A (Sun et al. 2006; Wang et al. 2006), suggestive of a HIF-driven reinforce-

ment of Ab generation. Additionally, Ab clearance is impaired in hypoxic condi-

tions. Pericytes in AD brain arteries express high levels of pericytic transcription

factors, i.e. serum response factor (SRF) and myocardin (MYOCD), leading to

hyper contractility. Hypercontractile pericytes interfere with the dynamic adapta-

tion of blood flow, thereby contributing to vessel hypoperfusion and impairing

perivascular clearance of Ab (Chow et al. 2007). Moreover, increased levels of SRF

and MYOCD in AD brain result in downregulation of LRP (Bell et al. 2009), a key

receptor of transendothelial Ab transport. As hypoxia can induce the expression of

these transcription factors, it arguably can trigger this cascade (Bell and Zlokovic

2009). In Fig. 5, a neurovascular model for AD is depicted, with Ab injury as

pivotal key event.

Angiogenesis and improved vessel function are considered to represent pro-

tective mechanisms in ischemic tolerance (Dirnagl et al. 2009; Gidday 2006).
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However, whether targeting PHDs might have a beneficial impact on the course of

neurodegenerative disorders through vascular effects remains speculative until

today. Nonetheless, certain findings may suggest to consider the vascular effects of

PHD inhibition as interesting target for further study. Indeed, postnatal disruption

of PHD2 augments brain angiogenesis in mice (Takeda et al. 2007) and pharmaco-

logical manipulation with available PHD inhibitors upregulates VEGF levels in the

brain; though the latter were insufficient to induce new vessel growth, they could

still promote vessel perfusion (Siddiq et al. 2005). Whether reduced endothelial

PHD2 activity leads to endothelial normalization of the pathologic vasculature in

the neurodegenerative brain represents a highly puzzling question for future

research.

5 Metabolism

5.1 Metabolism in Cancer: Sweet and Sour

Healthy cells with an aerobic metabolism generate ATP via oxidative phosphory-

lation and, hence, when oxygen levels drop, they switch to anaerobic glycolytic

metabolism to maintain energy production (Taylor and Pouyssegur 2007). Hypoxia

in tumors fuels a similar metabolic program that serves tumor growth advantages.

Fig. 5 Hypoxia as a central player in a feed-forward loop between Ab metabolism and cerebro-

vascular pathology in Alzheimer’s disease. Besides its direct detrimental effect on neuronal

function, hypoxia promotes Ab production and accumulation. An increased deposition of Ab in

the brain parenchyma and vessel wall will affect both neuronal and vascular function. Cerebro-

vascular deficits will further compromise oxygen delivery and contribute to a neurovascular

uncoupling. This intersection of hypoxia with Ab metabolism helps to explain how vessel defects

can both initiate and modify AD pathology through a feed-forward loop sustained by reduced

oxygen supply. (CAA cerebral amyloid angiopathy)
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For instance, glycolysis is stimulated through expression of glucose transporters

(GLUT) and key glycolytic enzymes (Semenza 2010b), facilitated by HIF-1a
upregulation. Accumulating pyruvate is shuttled away to lactate via lactate dehy-

drogenase A, another HIF target gene (Semenza 2010b). A cell-threatening drop in

pH level is counteracted by HIF-driven expression of lactate and proton efflux

transporters (Semenza 2010b). Most cancer cells also reprogram (reduce) mito-

chondrial respiration, oxygen consumption and consequently ROS generation.

HIF-1a reduces the entry of pyruvate into the TCA cycle by inducing the expression

of PDKs, which inhibit the PDH complex (Semenza 2010b). Additionally, mito-

chondrial autophagy is stimulated through HIF-mediated expression of BNIP3

(Semenza 2010b). HIF-1a facilitates the use of cytochrome c oxidase subunit 1

(COX4-1) over that of the COX4-2 isoform to optimize electron transport and

minimize the formation of free radicals (Semenza 2010b). Cancer cells undergo

other types of metabolic reprogramming, geared to promote anabolic synthesis of

macromolecules that function as building blocks for rapid cell growth (Deberardinis

et al. 2008; Jones and Thompson 2009; Vander Heiden et al. 2009), but it remains

largely unknown whether these are under the control of hypoxia signaling and

will be therefore not discussed in this review.

A similar, though not identical, metabolic reprogramming is observed in mice

lacking the oxygen sensor PHD1, which provides skeletal muscle fibers hypoxia

tolerance, even in the absence of any other adaptive processes governing oxygen

supply such as angiogenesis, vasodilatation and erythropoiesis. Ischemic muscle

necrosis upon ligation of blood supply is largely prevented by homozygous PHD1

deficiency (Aragones et al. 2008). PHD1 deficient myofibers consume less oxygen

due to reduced glucose oxidation as a result of increased expression of PDKs.

Increased levels of LDH and the lactate transporting monocarboxylate transporter

are observed as well, facilitating glycolytic flux (unpublished results, P.C.). The

hypoxia tolerant phenotype of PHD1 deficient mice is partly abrogated by HIF-

2a depletion, suggesting that PHD1 acts via HIF-2a in muscle (Aragones et al.

2008). Evidence exists that PHDs control a similar metabolic reprogramming in

tumor cells as well (Lee et al. 2008). Moreover, a partial “normalization” of the

cellular metabolism was observed in the better-oxygenated tumors of the PHD2

deficient mice, underscoring the role of hypoxia in driving the metabolic switch

(Mazzone et al. 2009).

PHDs can orchestrate tumor metabolism via additional mechanisms, other than

hypoxia, such as via regulating oxidative stress. The core catalytic activity of PHDs

depends on the redox state of iron, allowing the cell to respond to oxidative stress

(Gerald et al. 2004). Indeed, when ROS promote oxidation of Fe2+, a necessary co-

factor for these oxygen-sensing enzymes, PHDs become less active and, hence,

induce HIF-1a (Guzy and Schumacker 2006), which suppresses oxidative metabo-

lism, arguably a protective mechanism in this regard. Excessive amounts of ROS

could cause additional mitochondrial damage, compromising residual respiration

(Aragones et al. 2008) and ultimately end up in apoptosis (Denko 2008), and induce

mutagenesis as well (Ishikawa et al. 2008). DJ-1, a redox sensitive protein that is

activated upon oxidative stress, induces a protective and survival promoting
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activity via expression of antioxidant enzymes (Clements et al. 2006) and activation

of the PI3/Akt pathway through inhibition of PTEN (Kim et al. 2005). Recently, DJ-1

has been shown to induce HIF-1a in tumor cell lines by activating the PI3/Akt/mTOR

pathway, protecting the cell against hypoxic stress (Vasseur et al. 2009). Interest-

ingly, DJ-1 was originally described as an oncogene, but loss of function mutations

result in autosomal recessive hereditary Parkinson’s disease (Bonifati et al. 2003). It

is hypothesized that the cell survival dysfunction in both diseases is due to a lack

versus an excess of antioxidant and HIF-mediated responses.

PHDs might arguably act as sensors of pH homeostasis as well, as increased

levels of protons in low pH environments are expected to induce Fe2+ oxidation in

the redox sensing core unit. By upregulating lactate and proton efflux mechanisms,

a decrease in PHD activity prevents the detrimental effect of lowering pH levels on

cell proliferation, and, on top of that, contributes to an acidic extracellular pH,

which facilitates invasive tumor growth (Kroemer and Pouyssegur 2008; Swietach

et al. 2007).

Finally, with 2-oxoglutarate as cosubstrate and succinate as end product, PHDs

sense in a direct manner substrate availability for oxidative metabolism and bio-

synthesis. Interesting in this regard, several TCA enzymes are increasingly recog-

nized as possible tumor suppressors (Fig. 6). Heterozygous germline mutation in

Fig. 6 PHDs as pivotal feedback molecules in cellular metabolism. PHDs not only sense oxygen

availability but also respond to levels of oxygen radicals (ROS) and 2-oxoglutarate. In this way,

PHDs act as sensors of cellular metabolism, orchestrating an adaptive metabolic reprogramming

that allows cells to survive in conditions of reduced energy supply. In some tumors, genetic

alterations in tumor suppressors are adopting this feedback mechanism. Loss of function mutations

in FH and SDH (indicated by asterisks) result in increased levels of fumarate and succinate

respectively, blocking the hydroxylation activity of PHD through “product inhibition”. IDH

mutations (indicated by asterisks) involve both loss and gain of function characteristics as reduced
enzyme activity decreases the 2-oxoglutarate levels, whereas due to a pro-oncogenic function of

the mutated IDH1, the putative tumorigenic metabolite 2-hydroxyglutarate is formed
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the succinate dehydrogenase (SDH) gene and fumarate hydrase (FH) gene are

associated with the development of pheochromocytoma or paraganglioma/leio-

myosarcoma, respectively (Gottlieb and Tomlinson 2005). The molecular mecha-

nism underlying this tumor susceptibility partly involves “product inhibition”

by accumulation of succinate or the structural homologous fumarate (Isaacs et al.

2005; Selak et al. 2005). Succinate dehydrogenase is also functioning as complex II

in the respiratory chain. Arguably, a dysfunctional electron transport could increase

ROS generation, representing another mechanism of HIF upregulation (Guzy et al.

2008). Recent studies in glioma tumors revealed frequent heterozygous mutations

in the gene, coding for cytosolic isocitrate dehydrogenase (IDH), which converts

isocitrate to a-ketoglutarate (Yan et al. 2009a). Apart from catalyzing the conver-

sion of a-ketoglutarate to the putative onco-metabolite R(-)-2-hydroxyglutarate

(Dang et al. 2009), this mutation inhibits, via a dominant negative interaction, the

residual wild type enzyme, thereby decreasing a-ketoglutarate levels and, indirectly
through depletion of PHDs from their co-substrate, upregulating HIF-1a (Zhao

et al. 2009). Intriguingly, an extended survival of patients carrying the IDH1

mutation was reported (Yan et al. 2009a).

In summary, PHD/HIF signaling directs a metabolic reprogramming that not

only allows survival in the hostile tumor environment but also fuels malignant

metastatic behavior. Several lines of experimental and clinical evidence point to a

correlation between tumor metabolic features and poor outcome (Semenza 2009).

As gatekeepers of energy and redox homeostasis, PHD sensors are a prototypic

illustration of metabolism and tumorigenesis coming together.

5.2 Metabolism in Neurodegeneration: Food for Thought

Intermediates of the TCA cycle and free radicals affect the activity of PHDs,

providing a feedback mechanism to link the efficacy and substrate availability of

oxidative metabolism to the cellular hypoxia machinery. Mitochondrial dysfunc-

tion, impaired energy metabolism and oxidative stress represent familiar themes

in neurodegeneration; these phenomena are interconnected in a self-perpetuating

circle, which may culminate in neuronal death. Interestingly, genetic alterations

of the mitochondrial enzymes SDH, FH and IDH that are involved in tumorigen-

esis are similarly implicated in neurodegenerative phenotypes. Bi-allelic germline

mutations in SDHA and FH cause progressive infantile encephalopathies, known

as Leigh syndrome (Bourgeron et al. 1995) and fumarate deficiency syndrome

(Bourgeron et al. 1994), respectively. Moreover, 3-nitroproprionic, a succinate

dehydrogenase inhibitor, induces selective striatal neuronal death and hence

serves as a model for Huntington’s disease (Garcia et al. 2002). Degeneration of

photoreceptors in retinitis pigmentosa can result from loss of function mutations

in the IDH3B gene (Hartong et al. 2008). Whereas in tumor biology a link

between the mutated metabolic enzymes and the PHD/HIF pathway was estab-

lished, it remains unclear whether this feedback mechanism contributes to
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neuronal death in these neurologic diseases as well. In the last section, we will

discuss the involvement of deregulated energy metabolism at the crossroad of

hypoxia signaling in ALS and AD.

5.2.1 Amyotrophic Lateral Sclerosis

With their axons extending more than one meter, motor neurons in humans are

metabolically exceedingly demanding cells and therefore highly vulnerable to a

disturbed energy homeostasis. Not surprisingly, both structural mitochondrial

abnormalities and functional deficits with excessive ROS generation have been

documented in ALS patients and rodent disease models (Hervias et al. 2006).

Alternative evidence for deregulated metabolism comes from epidemiological

data reporting glucose intolerance in a subset of ALS patients (Pradat et al.

2010). Rather unexpectedly was the observation of a hypermetabolic state with

increased energy expenditure both in ALS patients as in the SOD1 mouse model

(Bouteloup et al. 2009; Dupuis et al. 2004). Given the significant phenotypic

improvement in SOD1 mice subjected to a high fat diet, this metabolic hypothesis

warrants further mechanistic analysis. Whether the metabolic disturbances in ALS

involve PHD signaling represents an exciting, unexplored area of research.

5.2.2 Alzheimer’s Disease

Cerebral hypometabolism in AD patients has been a longstanding finding. FDG-

PET imaging shows reduced glucose metabolism in specific brain circuitries, even

in preclinical stages and presymptomatic subjects (Mosconi et al. 2008), suggesting

a primary role of metabolic deficits in disease initiation and progression. Almost

any level of glucose metabolism is affected in AD. First, the cellular glucose uptake

is impaired. AD brains demonstrate reduced levels of GLUT1 and GLUT3, key

neuronal glucose transporters (Liu et al. 2008). In animal models, decreased

glucose metabolism is found to trigger tau hyperphosphorylation and consequently

neurofibrillary tangle formation (Li et al. 2006). Even though glycolytic activity in

AD is generally thought to be impaired (Bigl et al. 1999; Brooks et al. 2007), other

groups report an enhanced activity of glycolytic enzymes in AD brains and mouse

models (Soucek et al. 2003) and facilitated glycolytic flux in embryonic neuronal

cultures from a triple transgenic AD mouse model (Yao et al. 2009), findings that

will need to be reconciled better in the future. Impaired glucose oxidation is

suggested by decreased expression and activity of mitochondrial enzymes and

complexes in human autopsy samples (Blass et al. 2000; Brooks et al. 2007).

These mitochondrial defects are found early in disease (Yao et al. 2009) and likely

causally implicated, since AD cybrid cells (in which the mitochondria are replaced

by mitochondria from AD patients) exhibit biochemical signs of mitochondrial

dysfunction (Sheehan et al. 1997). Oxidative damage has been reported in AD brain

(Andersen 2004), and is commonly designated as an important mediator of
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neuronal death. Some of these metabolic alterations may be related to Ab, the
pivotal neurotoxic player in AD. Indeed, Ab reduces the glycolytic rate in astro-

cytes (Schubert et al. 2009), possibly via oxidation of glycolytic enzymes, and

causes excessive ROS generation (Behl et al. 1994). Mitochondria are accumulat-

ing Ab as well, where it directly interferes with mitochondrial function through

interaction with complex III and IV (LaFerla et al. 2007).

An intriguing but controversial link between Ab, glucose metabolism and HIF-

1a-mediated hypoxia signaling has emerged over the past decade. A number of

studies implicate HIF in an endogenous protective response against Ab-induced
toxicity. Increased glucose uptake, glycolytic flux and activity of the hexose

monophosphate pathway, all induced by HIF-1a, have been considered as meta-

bolic signature of Ab resistant neural cell clones (Soucek et al. 2003). This

metabolic program is argued to provide protection through generation of reducing

equivalents via glycolysis and the hexose monophosphate shunt. Furthermore, HIF-

1a induction reversed the Ab-induced astrocyte activation and glycolytic reduction
(Schubert et al. 2009). The question to what extent AD affects HIF-1a levels yields

conflicting results: HIF-1a levels in autopsy specimens have been reported to be

decreased (Liu et al. 2008) or upregulated (Soucek et al. 2003). Technical cha-

llenges to prevent rapid degradation of HIF proteins may complicate interpretation

of some of these findings. Ab has been shown to induce HIF-1a, which was

hypothesized to occur through ROS generation (Acker and Acker 2004). Recent

studies however refined this proposition and suggest that Ab transiently inhibits

proteosomal activity (resulting in HIF accumulation initially) but subsequently

activates proteosomal degradation of HIF, offering an explanation for the observed

reduced HIF levels (Guglielmotto et al. 2009; Schubert et al. 2009). The adverse

effect of aging on the ability of a cell to induce the HIF pathway may further reduce

neuroprotection in AD (Chavez and LaManna 2003).

All together, the precise role of metabolic alterations in the pathogenesis of

neurodegeneration as well as the extent to which PHD signaling is involved remains

largely obscure. In primary neuronal cultures at least, a metabolic adaptation

involving upregulation of glycolytic enzymes and downregulation of oxidative

metabolism is believed to contribute to their hypoxic resistance (Malthankar-Phatak

et al. 2008). In neurodegenerative disorders, some evidence suggests a beneficial

HIF-mediated metabolic reprogramming, as discussed above, although extensive

work in the future will be needed to clarify the current controversies.

6 Conclusion

Cancer and neurodegeneration are two devastating age-associated diseases that

cause a growing health burden in the aging population. Although these conditions

are considered at the two ends of cell fate, they share a disturbed oxygen homeo-

stasis in their pathogenesis. Whereas cancer cells adopt the hypoxic response to faci-

litate their growth, this protective mechanism is overwhelmed in neurodegenerative
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diseases. PHD signaling – at the crossroad between blood vessels and metabolism –

involves both cell-autonomous activities as a crosstalk with the surrounding stroma.

A better molecular characterization of the role of PHDs will likely lead to the

development of effective therapies for both diseases.
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inflammation, tissue injury, and solid tumors. Hypoxia-inducible factors (HIFs) are

principle regulators of hypoxic adaptation, regulating gene expression involved in

glycolysis, erythropoiesis, angiogenesis, proliferation, and stem cell function under

low O2. Interestingly, increasing evidence accumulated over recent years suggests

an additional important regulatory role for HIFs in inflammation. In macrophages,

HIFs not only regulate glycolytic energy generation, but also optimize innate

immunity, control pro-inflammatory gene expression, mediate bacterial killing

and influence cell migration. In neutrophils, HIF-1a promotes survival under O2-

deprived conditions and mediates blood vessel extravasation by modulating

b2 integrin expression. Additionally, HIFs contribute to inflammatory functions in

various other components of innate immunity, such as dendritic cells, mast cells,

and epithelial cells. This review will dissect the role of each HIF isoform in myeloid

cell function and discuss their impact on acute and chronic inflammatory disorders.

Currently, intensive studies are being conducted to illustrate the connection

between inflammation and tumorigenesis. Detailed investigation revealing interac-

tion between microenvironmental factors such as hypoxia and immune cells is

needed. We will also discuss how hypoxia and HIFs control properties of tumor-

associated macrophages and their relationship to tumor formation and progression.

1 Introduction

Tissue O2 concentrations are typically maintained by homeostatic mechanisms

operating at the cellular, organ, and systemic levels. In vivo, O2 tension varies

from 2.5 to 9% in most healthy tissues. However, inflamed or diseased tissues can

be deprived of O2 due to vascular damage, intensive metabolic activity of bacteria

and other pathogens, and large numbers of infiltrating cells, leading to O2 levels of

less than 1% (Leek and Harris 2002; Lewis et al. 1999). As the front line of a body’s

defense, myeloid cells are required to function in this hypoxic microenvironment to

combat infection, mediate inflammation, promote adaptive immunity and perform

tissue repair functions (Lewis et al. 1999). These cells are unique in that they are

well-adapted to hypoxia both metabolically and functionally. For example, neu-

trophils naturally operate under a pro-glycolytic program, and low O2 endows

neutrophils with a survival advantage over normoxic conditions (Hannah et al.

1995; Walmsley et al. 2005a, b). Macrophages specifically infiltrate hypoxic

tissues, switch their metabolic program to glycolysis, resist apoptotic stimuli, and

respond to O2 deprivation by altering gene expression to maximize their biological

properties (Cramer et al. 2003; Murdoch et al. 2004).

Cells adapt to hypoxia by shifting their energy generation pathway from aerobic

oxidative phosphorylation to anaerobic glycolysis, and recovering blood supply via

stimulation of erythrocyte production and the generation of new blood vessels

(Semenza 2009). In addition to these established cellular responses, another aspect

of hypoxia in connection with inflammation has been increasingly appreciated

over recent years. A low O2 microenvironment appears to actually amplify myeloid
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cell-mediated inflammatory responses, contributing to a highly inflamed state.

During O2 deprivation, many cellular responses are primarily regulated by HIFs.

In pathological settings which involve inflammation or innate defense processes,

HIFs are required to control programs associated with a broad range of myeloid cell

functions (Cramer et al. 2003; Jantsch et al. 2008; Peyssonnaux et al. 2005, 2007;

Walmsley et al. 2005b). HIFs are, therefore, essential regulators of inflammation and

innate immunity, as will be detailed below. The relationship between inflammation

and cancer, and how hypoxia and HIFs contribute to these processes will also be

discussed. Adaptation of tumor-associated macrophages (TAMs) to hypoxic tumor

microenvironments and their influences on tumor phenotypes will be highlighted.

2 Regulation of HIF Transcriptional Pathways

2.1 Oxygen-Dependent HIF Activity

In mammalian cells, hypoxic adaptation is primarily regulated by master transcrip-

tional factors, called HIFs, whose activity is based on the post-translational modifi-

cation and stability of their a subunits (HIF-1a and HIF-2a). In O2 replete cells, prolyl

hydroxylases (PHD-1, -2, and -3) modify the a subunit at two conserved prolines,

resulting in polyubiquitylation via a specific von Hippel-Lindau (pVHL)-E3 ligase

complex and subsequent degradation by proteasomes (Ivan et al. 2001; Jaakkola et al.

2001; Masson et al. 2001; Yu et al. 2001). Meanwhile, asparaginyl hydroxylation of

HIF-a by factor inhibiting HIF (FIH) prevents its interaction with the co-activator

p300/CBP, resulting in transcriptional inactivation under normoxia (Lando et al.

2002; Mahon et al. 2001; Sang et al. 2002). At sites of reduced O2 tension, PHD

and FIH hydroxylase activities are reduced. Stabilized a subunits then translocate to

the nucleus, form dimers with constitutive HIF-1b (also known as the aryl hydrocar-

bon receptor nuclear translocator (ARNT)) and bind to co-activators, permitting

transcriptional activation of many hypoxia-response element (HRE)-bearing genes

encoding metabolic, angiogenic and metastatic factors (Covello and Simon 2004).

2.2 Inflammatory Stimuli-Induced HIF Activity

Besides O2-dependent activation pathways, HIFs are also induced by inflammatory

cytokines, growth factors and bacterial products at normoxic conditions, although

the underlying molecular pathways are not fully revealed. Pro-inflammatory cyto-

kines TNF-a and IL-1b have been shown to increase accumulation and transcrip-

tional activity of HIF-1a. TNF-a-induced HIF-1a stimulation requires NF-kB at

the level of HIF-1a protein stabilization without affecting its mRNA level (Jung

et al. 2003a; Zhou et al. 2003). Similarly, IL-1b acts on HIF-1a protein stability by
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triggering NF-kB activity and inhibiting VHL-mediated protein degradation (Jung

et al. 2003b). Moreover, TGF-b1 enhances HIF-1a protein stability by inhibiting

PHD2 expression, via Smads (McMahon et al. 2006). The fact that HIF can be

activated in response to inflammatory cytokines indicates HIF may play an impor-

tant role in inflammation.

In addition to cytokines, bacteria and bacterial products such as lipopolysacchar-

ide (LPS) also stimulate HIF-1a activity under normal O2 levels. Several pathways

have been reported to be involved in this process, including NF-kB (Fang et al.

2009; Frede et al. 2006; Nishi et al. 2008; Rius et al. 2008), ROS (Nishi et al. 2008),

PHDs (Peyssonnaux et al. 2007) and p42/p44 mitogen-activated protein kinases

(MAPKs) (Frede et al. 2006). The implication of NF-kB in this process has been

controversial. Frede et al. reported that LPS induces HIF-1a mRNA expression in

human monocytes through NF-kB binding to the promoter of the HIF-1a gene

(Frede et al. 2006). Using IKK-bmutant macrophages, it was also shown that NF-k
B is responsible for HIF-1a transcription and protein stability, and that IKK-b
deficiency results in decreased expression of HIF targets such as glucose trans-

porter-1 (Glut-1). In contrast, other studies demonstrated HIF-1a induction by LPS

is not dependent on NF-kB activity (Fang et al. 2009; Nishi et al. 2008), but rather

ROS generation (Nishi et al. 2008). Additionally, it has been shown that LPS

increases HIF-1a protein accumulation through decreasing PHD2 and PHD3 levels

in macrophages in a toll-like receptor-4 (TLR4)-dependent manner (Peyssonnaux

et al. 2007). Future studies elucidating the crosstalk between HIFs and NF-kB are

required given the importance of these two transcriptional factors in regulating

hypoxic response and inflammation, respectively.

3 Role of HIFs in Myeloid Cell Functions

3.1 HIF Regulates Macrophage Activity

Macrophages display a variety of functions depending upon the type of stimulus

presented in the local environment (Gordon 2003; Mosser and Edwards 2008).

Interestingly, these cells accumulate in large numbers within O2-deprived areas in

various diseases such as bacterial infections, atherosclerosis, rheumatoid arthritis

(RA), wounds and solid tumors, suggesting that hypoxic responses regulate macro-

phage biological activities (Murdoch et al. 2005). Exposure to hypoxia markedly

changes macrophage gene expression profiles, resulting in the up-regulation of

surface receptors (e.g., CXCR4 and Glut-1) and pro-angiogenic factors (Fang

et al. 2009). Two a subunits, HIF-1a and HIF-2a, have been demonstrated to

promote the expression of most O2-regulated genes (Covello and Simon 2004).

Whereas HIF-1a appears to be expressed ubiquitously, HIF-2a is expressed in a

more tissue-restricted manner (Covello and Simon 2004). In macrophages,

both HIF-1a and HIF-2a expression are induced in response to hypoxia in vitro
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(Burke et al. 2002; Griffiths et al. 2000). Moreover, HIF-1a appears to be required

for macrophage maturation (Fang et al. 2009; Oda et al. 2006). Interestingly,

HIF-2a protein is readily detected in vivo in bone marrow macrophages and has

been shown to be highly expressed in TAMs found in various human cancers (Talks

et al. 2000). To elucidate the relative contribution of each HIF-a in the regulation of
hypoxia-induced macrophage gene expression, siRNA-mediated knockdown of

individual HIF-a subunits were performed in human monocyte-derived macro-

phages (Fang et al. 2009). Whereas HIF-1a and HIF-2a regulate expression of

multiple common genes such as CXCR4, Glut-1, adrenomedulin (ADM) and

STAT-4, expression of certain genes such as adenosine A2a (ADORA2A) and

ICAM1 was only modulated by HIF-2a. Furthermore, over-expression of HIF-2a,
but not HIF-1a, in normoxic human macrophages leads to enhanced transcription of

pro-angiogenic genes including VEGF, IL-8, platelet-derived growth factor b
(PDGFB) and angiopoietin-like 4 (ANGPTL4) (White et al. 2004). Collectively,

these studies suggest HIF isoforms may play overlapping, but also distinct, roles in

macrophage adaptation to low O2.

To investigate macrophage biological properties, myeloid-specific ablation of

the HIF-1a subunit in mice was created by crossing the floxed Hif-1a allele with a

lysozyme M cre line (Cramer et al. 2003). This study demonstrated a dominant role

for HIF-1a in regulating glycolysis in macrophages (Cramer et al. 2003) as HIF-1a
deficiency results in a dramatically reduced ATP pool. This is consistent with other

studies demonstrating that HIF-1a exclusively controls glycolysis (Hu et al. 2003).

The metabolic defect in HIF-1a deletion in macrophages results in impairment of

energy-demanding processes such as aggregation, migration and invasion (Cramer

et al. 2003).

In addition to its key role in regulating metabolism and energy generation,

fundamental work by Cramer et al. showed that HIF-1a mediates macrophage

inflammatory responses. Compared to control mice, myeloid HIF-1a-null mice

displayed reduced acute skin inflammation triggered by 12-O-tetradecanoylphor-

bol-13-acetate (TPA), as evidenced by decreased edema and leukocyte infiltration

(Cramer et al. 2003). When induced to develop arthritis, these mice also showed

compromised synovial infiltration, pannus formation and cartilage destruction,

suggesting ameliorated chronic inflammatory responses mediated by HIF-1a-defi-
cient macrophages.

Many of the pro-inflammatory cytokine/chemokine genes are activated by

hypoxic treatment in human primary macrophages. Compromised expression of

IL-1b, CXCL8 and VEGF was observed in cells exhibiting reduced expression of

either HIF-1a or HIF-2a, indicating both HIFs are important for macrophage

cytokine expression (Fang et al. 2009). Given these cytokines/chemokines are

also known to be NF-kB targets, the role of NF-kB in inducing their expression

under low O2 concentration has been evaluated. However, inactivation of NF-kB,
either chemically or genetically, did not influence hypoxia-induced cytokine

expression (Fang et al. 2009). This result suggests that HIFs, but not NF-kB, are
important transcriptional effectors regulating the hypoxic gene expression of

macrophages.
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Innate immunity was also assessed in myeloid HIF-1a null mice by Peyssonnaux

et al. (2005). The authors demonstrated that loss of myeloid HIF-1a resulted in

decreased bacterial killing of group A Streptococcus and P. aeruginosa by macro-

phages in vitro and in vivo (Peyssonnaux et al. 2005), revealing the importance of

myeloid HIF-1a in this process. Furthermore, exposure to these pathogens and LPS

under normoxia induces HIF-1a activity in macrophages in a TLR-4 dependent

fashion (Peyssonnaux et al. 2007). Finally, HIF-1a directly binds to the promoter of

the TLR4 locus and up-regulates TLR4 expression during O2 deprivation (Kim et al.

2009). Thus, the interdependent relationship between HIF-1a and TLR4 activation

may result in a positive feedback loop, amplifying HIF responses under hypoxia

and infection. Collectively, these findings suggest hypoxic stress at sites of inflam-

mation both enhances sensitivity to infection by strengthening TLR4 signaling and

promotes the defense capacity of macrophages by increasing HIF-1a levels (Fig. 1).

TLR4
LPS

MyD88Hypoxia

NF-κBPHDs  MAPKs

HIF Synthesis/Stabilization

X?ROS

Classical HIF targets

Cytokines/chemokines

TLR4

Fig. 1 Possible mechanisms for maximal inflammatory responses elicited by lipopolysaccharide

(LPS) during hypoxia. In macrophages, LPS induces hypoxia-inducible factor (HIF) protein

synthesis and stabilization in a TLR4/MyD88-dependent fashion. The signaling pathways for

LPS-induced HIF stabilization possibly involve ROS, inhibition of prolyl hydroxylases (PHDs),

mitogen-activated protein kinase (MAPK), NF-kB and/or unknown factors (X). Upon HIF protein

accumulation, it translocates to the nucleus and stimulates expression of classical HIF target genes,

inflammatory cytokines/chemokines, and TLR4. TLR4 further enhances HIF expression and

transcriptional activity, resulting in a positive feedback loop. Together with the LPS-TLR4

pathway, hypoxia itself stabilizes HIF protein via inhibiting PHDs, serving to amplify HIF-

mediated inflammatory responses during infection and O2 deprivation
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Given the importance of HIF-2a in macrophages implicated by gene expression

studies (Fang et al. 2009; Griffiths et al. 2000; Talks et al. 2000; White et al. 2004),

genetic experiments utilizing mouse models have now been performed to investi-

gate the role of HIF-2a in various aspects of macrophage functions (Imtiyaz et al.,

manuscript submitted). A clear division of labor exists between the two HIF-a
isoforms in these cells where HIF-2a is clearly important for inflammatory cytokine

expression, macrophage migration, and responses to inflammatory stimuli.

3.2 HIF Function in Other Myeloid Cells

Neutrophils are important phagocytes which clear invading pathogens and mediate

acute inflammation (Bredetean et al. 2007). As they rely on glycolysis to generate

ATP, these cells seem to be well-suited to function in the hypoxic microenviron-

ment naturally present in inflammatory lesions (Walmsley et al. 2005a). Studies of

HIF-1a-deficient neutrophils revealed that neutrophils require HIF-1a to perform

glycolysis (Cramer et al. 2003). Using murine bone marrow-derived neutrophils

and human peripheral blood neutrophils, Walmsley et al. demonstrated that cells

deficient in HIF-1a failed to resist apoptosis under hypoxic conditions (Walmsley

et al. 2005b). Moreover, this HIF-mediated survival effect is also dependent on the

activity of NF-kB, and is eliminated with treatment of NF-kB inhibitors (gliotoxin

and parthenolide). Migration of neutrophils from circulation to sites of infection or

tissue damage involves a process of selectin-mediated rolling and b2 integrin-

mediated adhesion to endothelium (Carlos and Harlan 1994). It has been demon-

strated that HIF-1a regulates b2 integrin (CD18 specifically) expression in these

cells and thereby promotes neutrophil extravasation (Kong et al. 2004). HIF-2a is

unlikely to play a role in neutrophil function as it is not expressed in this lineage

(Walmsley et al. 2005b) (Imtiyaz et al., submitted).

Progress has been made in deciphering the role of HIF-1a in two other types of

myeloid cells. As professional antigen presentation cells, dendritic cells (DCs) play

a key role in linking innate and adaptive immunity. Recent work by Jantsch et al. has

revealed that hypoxia and HIF-1amodulate DC maturation, activation and antigen-

presenting functions (Jantsch et al. 2008). Although hypoxia alone did not activate

DCs, hypoxia combined with LPS led to marked increases in expression of

co-stimulatory molecules, pro-inflammatory cytokine synthesis and induction of

lymphocyte proliferation compared with LPS alone. This DC activation was accom-

panied by HIF-1a protein accumulation and enhanced glycolytic activity. Moreover,

knockdown of HIF-1a significantly reduced glucose uptake, inhibited maturation

and led to an impaired capacity to stimulate allogeneic T cells (Jantsch et al. 2008).

Mast cells are granulocytes implicated in allergy, and evidence regarding their roles

in both innate and adaptive immunity is now emerging. Activation of HIF-1a in mast

cells stimulates expression of VEGF, CXCL8, IL-6, and TNF (Jeong et al. 2003; Lee

et al. 2008). It will be interesting to determine the expression and possible function

of HIF-2a in both DCs and mast cells in future experiments.
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4 Hypoxia, HIFs and Inflammatory Diseases

4.1 Sepsis

Sepsis is an aberrant host inflammatory response provoked by overwhelming

infection or LPS. It leads to the potentially lethal systemic inflammatory response

syndrome (SIRS) characterized by acute inflammation, hemodynamic compromise,

multi-organ failure and even shock (Jean-Baptiste 2007; Parrillo 1993). Currently,

sepsis is still the leading cause of mortality in intensive care units. The systemic

effects of LPS are largely mediated by macrophages which produce a wide array

of inflammatory cytokines (Jean-Baptiste 2007; Ulloa and Tracey 2005). Pro-

inflammatory cytokines IL-1b, IL-12, TNF-a, and INF-g have all been implicated

in the toxic effects of endotoxemia, as neutralization of individual cytokines by

specific antibodies protects mice from LPS-induced lethality (Dinarello 1991;

Doherty et al. 1992; Heinzel 1990; Kumar et al. 1996; Tracey et al. 1987; Zisman

et al. 1997). In contrast, the anti-inflammatory cytokine IL-10 has been proven to be

beneficial (Howard et al. 1993; Nicoletti et al. 1997; Standiford et al. 1995). Studies

of LPS-induced responses in myeloid HIF-targeted mice revealed that HIF-1a is

important for the sepsis phenotype. HIF-1a deletion in myeloid cells led to reduced

pro-inflammatory cytokines such as TNF-a, IL-1, and IL-12 (Peyssonnaux et al.

2007). In addition, HIF-1a contributes to the lethal effects of LPS as mice survived

much longer when myeloid HIF-1a is absent. Moreover, HIF-1a deletion blocked

LPS-induced hypotension and hypothermia caused by sepsis (Peyssonnaux et al.

2007). Whether HIF-2a ablation in macrophages results in a similar septic pheno-

type requires future study.

4.2 Atherosclerosis

Atherosclerosis is a chronic inflammatory response in the walls of arteries, in large

part due to the accumulation of macrophages (known as foam cells) that take up

oxidized low-density lipoproteins (Portugal et al. 2009). The build-up of “fatty

streaks” by these fat-containing macrophages forms atherosclerotic plaques,

leading to arterial stenosis and impaired perfusion (Zemplenyi et al. 1989). Using

the hypoxia marker 7-(40-(2-nitroimidazol-1-yl)-butyl)-theophylline, a previous

study has shown zones of hypoxia are present in the plaques, probably due to

impaired O2 diffusion into these lesions (Bjornheden et al. 1999). At least two

macrophage-derived products have been implicated in the plaque development.

The first one is very low-density lipoprotein receptor (VLDLR) which has been

shown to be expressed by macrophages in atherosclerotic lesions (Nakazato et al.

1996). In vitro, VLDLR levels are increased by hypoxia in macrophages (Nakazato

et al. 2001), although whether this is dependent on HIF expression is currently

unclear. The second factor is CXCL-8 (i.e., IL-8), a potent chemoattractant for
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T lymphocytes and smooth muscle cells. Significant elevation in CXCL-8 produc-

tion has been found in foam cells isolated from human atherosclerotic plaques

compared with macrophages in culture (Liu et al. 1997). Of note, foam cells found

in hypoxic zones displayed enhanced CXCL-8 levels in both rabbit and human

atherosclerotic sites compared to the normal arterial wall (Rydberg et al. 2003).

Moreover, hypoxia induces CXCL-8 expression in primary human macrophages,

mediated by both HIF-1a and HIF-2a (Fang et al. 2009). Interestingly, expression

of CXCR2, the receptor for CXCL-8, in macrophages significantly contributes to

the progression of advanced atherosclerosis in mice (Boisvert et al. 2000), under-

scoring the importance of the CXCL8-CXCR2 signaling axis in this disease. It will

be interesting to determine the genetic requirements for either HIF-1a or HIF-

2a expression in macrophages using appropriate animal models of atherosclerosis.

4.3 Rheumatoid Arthritis

RA is another type of chronic inflammatory disorder that primarily attacks the

joints, producing a synovitis that often progresses to destruction of bone and

cartilage (Muz et al. 2009). Although the cause of RA is unknown, hypoxia has

been suggested to contribute to its pathology (Muz et al. 2009; Sivakumar et al.

2008). Using microelectrodes and the hypoxia marker pimonidazole (PIMO) stain-

ing, reduced O2 tension has been detected in the synovium of RA patients and

animals (Peters et al. 2004; Sivakumar et al. 2008). The presence of hypoxia in RA

joints is probably attributable to continuous synovial expansion which outstrips the

blood-borne O2 supply. In RA synovial membrane cultures which contain macro-

phages, lymphocytes and fibroblasts, hypoxia appears to be a potent stimulus for

VEGF induction, a classical hypoxia-responsive gene. Moreover, macrophages in

RA joints express factors such as VEGF, IL-1, TNF-a, CXCL-8, CXCL-12, Cox-2,
and MMP-1 (Muz et al. 2009), some of which are known hypoxia-regulated factors.

The precise mechanism for how hypoxia regulates these molecules in RA joints is

unclear and requires further investigation. Interestingly, several of these factors

(e.g., VEGF, IL-1, TNF-a, and CXCL-8) are known to promote angiogenesis, a

characteristic of RA progression (Szekanecz et al. 1998). However, there appears to

be a paradox in that abundant synovial vasculature is nonetheless associated with

regions of synovial hypoxia. This may suggest that over-activation of the angio-

genesis cascade by hypoxia results in formation of chaotic vessels with decreased

blood flow, similar to that seen in many solid tumors.

As described above, in a mouse model of induced arthritis, it has been shown

that myeloid HIF-1a activity is important for disease development (Cramer et al.

2003). To understand precisely how HIF-1a is involved in RA pathogenesis, it

would be useful to isolate synovial macrophages to analyze HIF-dependent gene

expression. It remains to be determined whether HIF-2a expression in myeloid cells

(mainly macrophages) is also required in RA pathogenesis.
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5 HIF Activities in Tumor-Associated Macrophages

5.1 Connecting Inflammation and Cancer

Since Rudolf Virchow’s observation in 1863 that leukocytes infiltrate malignant

tissues, suggesting cancers arise at sites of chronic inflammation, a relationship

between inflammation and cancer has emerged. Epidemiological studies clearly

demonstrate that�15% of human cancer deaths are associated with chronic viral or

bacterial infections. For example, human papillomaviruses, hepatitis B virus (HBV)

and hepatitis C virus (HCV), and the bacterium Helicobacter pylori cause cervical
cancer, hepatocellular carcinoma and gastric cancer, respectively (Mantovani et al.

2008). This effect is attributed to inflammatory cells and cytokines thought to

establish an inflammatory microenvironment in tumors (Balkwill and Mantovani

2001). Interestingly, within tumors, macrophages represent a major component

of infiltrating leukocytes (also including DCs, neutrophils, mast cells, and T

cells) (Kelly et al. 1988; Leek et al. 1994), as well as the nontumor stromal cell

compartment.

Clinically, increased TAM density correlates with poor patient prognosis

(Pollard 2004; Bingle et al. 2002). Such correlative data are particularly convincing

for breast (Leek et al. 1996), prostate (Lissbrant et al. 2000), cervical (Fujimoto

et al. 2000) and ovarian cancers (Pollard 2004). Using mouse models of macro-

phage colony stimulating factor (M-CSF) mutations, Lin et al. demonstrated that

macrophage-deficient animals showed marked decreases in the rate of tumor

metastasis, although primary tumor growth rate was normal (Lin et al. 2001). The

authors concluded that TAM abundance potentiates tumor progression. Further-

more, using hepatocyte-specific NF-kB inactivation models, several groups have

indicated that pro-inflammatory cytokines produced by Kupffer cells (namely IL-6,

TNF-a, and IL-1b) promote compensatory proliferation of hepatocytes, resulting in

a significant increase in hepatocarcinogenesis (Luedde et al. 2007; Maeda et al.

2005; Naugler et al. 2007). Therefore, rather than limiting tumors, inflammation

can actually promote tumor initiation, growth and metastasis.

5.2 Hypoxia and TAMs

Solid tumors contain large areas of hypoxia, exhibiting O2 tensions between 0.1 and

1%. The presence of increased hypoxic domains correlates with poor prognosis

(Vaupel et al. 2001), due to the relative resistance of hypoxic cells to conventional

cancer therapies (Hockel and Vaupel 2001). Also, low O2 promotes rapid angio-

genesis and exerts pressure for the selection of mutant tumor cells with survival or

growth advantages (Brown and Giaccia 1998). Interestingly, hypoxia and TAMs

co-localize in tumor avascular or perinecrotic regions, indicating that TAMs

specifically accumulate in O2-deprived regions within tumors. To accomplish

114 H.Z. Imtiyaz and M.C. Simon



this, tumor cells produce chemokines CCL2 and CCL5, and the cytokine M-CSF

which serve to recruit monocytes from the local vasculature to tumors. Upon

tumor infiltration, monocytes differentiate into TAMs and migrate along the

chemoattractant gradient generated by hypoxia (Murdoch et al. 2004). Increased

expression of macrophage chemoattractants such as VEGF, endothelins, IL-8 and

endothelial monocyte activating polypeptide II (EMAP II) occurs in hypoxic

tumor cells. Thereafter, due to down-regulation of adhesion markers and chemo-

attractant receptors, abrogation of chemotactic signal transduction, and the migra-

tion inhibitory actions of MIF, TAMs decrease their motility and are subsequently

immobilized in these O2-deprived areas (Murdoch et al. 2004; Grimshaw and

Balkwill 2001).

Studies of breast cancer have revealed a positive correlation between numbers of

TAMs in hypoxic sites and levels of angiogenesis, lymph node involvement and

poor prognosis (Grimshaw and Balkwill 2001). This suggests that O2 depletion

promotes TAM responses leading to the development of pro-tumor phenotypes.

Under hypoxia, TAMs up-regulate hypoxia-inducible transcription factors, and

activate expression programs that appear to be pro-angiogenenic, pro-tumor

growth, pro-metastatic and immunosuppressive (Lewis and Pollard 2006; Pollard

2004; Sica et al. 2006).

5.3 HIF-2a Activity in TAMs

Although both HIF-1a and HIF-2a could be stabilized in hypoxic TAMs, work from

Talks et al. showed that HIF-2a, in particular, is strongly expressed in these cells

across a wide range of human tumors (Talks et al. 2000). To elucidate the impact of

high TAM HIF-2a expression on tumor phenotypes and prognosis, clinical studies

have been performed on human breast cancer by Leek et al. (2002). This investiga-

tion revealed a positive correlation between the numbers of HIF-2a-expressing
TAMs and poor prognosis. Moreover, high TAM HIF-2a levels are associated

with increased tumor grade and tumor vascularity, suggesting HIF-2a expression

in TAMs promotes tumor progression by improving angiogenesis (Leek et al.

2002). In another recent study, Kawanaka et al. investigated the significance of

TAM HIF-2a expression in predicting survival and relapse on uterine cervical

cancer patients undergoing radiotherapy (Kawanaka et al. 2008). Their results

showed that increased numbers of HIF-2a-expressing TAMs are associated with

poor disease-free survival and higher rate of local recurrence (Kawanaka et al.

2008). Given the clinical implications, studies determining the role of HIF-2a in

TAMs using inflammation-associated tumor models and conditional knockout

mouse lines is under investigation (Imtiyaz et al., manuscript submitted). It would

be interesting to see how TAM HIF-2a affects tumor initiation, promotion and

progression. Finally, determining whether HIF-1a is involved in TAM activities

and tumorigenesis is certainly warranted.
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6 Conclusions

Inflammation is a complex innate immune response elicited at sites experiencing

infection, toxin exposure and injury. While proper inflammation helps to destroy

infectious agents and restores tissue integrity, improper responses are harmful,

leading to tissue destruction, vascular damage, and even organ failure in the case

of sepsis. The connection between hypoxia and inflammation has become evident

over the last decade, centering on the activity of HIFs. As ancient low-O2 adapta-

tion regulators expressed in all metazoan species, HIFs also confer responses to

immune stresses. This is manifested by their ability to regulate cytokine expression,

myeloid cell migration and effector functions. HIFs also act to further amplify these

responses under hypoxia. Dysregulation of HIFs has been shown to result in various

diseases, as revealed above. HIFs therefore represent both drug candidates and

targets dependent on disease types. In an immunodeficient scenario, boosting HIF

activity is expected to improve inflammation and effector functions to defeat

infection. This could be achieved by inhibiting the activities of PHDs and pVHL

protein which negatively regulate HIFs. Given that many inflammatory disorders

cause either prolonged or exaggerated inflammatory responses, targeting HIF

activity or its downstream genes would be an attractive strategy for therapeutical

intervention. Moreover, inhibition of VEGF leading to vessel normalization, and

thus tissue re-oxygenation, may also be helpful to treat chronic inflammation.
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1 Introduction

Hypoxic response in tumors is complex, and is an intrinsic aspect of virtually

all solid tumor physiology. In many tumors, it may play only a peripheral role,

particularly if the tumors remain small, nonnecrotic and nonmetastatic. In others,

and especially in rapidly expanding and metastasizing masses, hypoxia and ische-

mia appear to be key elements in the biology and natural history of the disease.

We will here review evidence that hypoxic response is a central component of

metastasis and the metastatic process, particularly in human breast cancer and its

animal models.

2 Tumors and Hypoxia

Growing solid tumors become hypoxic when blood supply is insufficient, either due

to outgrowth of the existing vasculature, or as a result of formation of a dysfunc-

tional vasculature. In response to hypoxia, tissues attempt to restore oxygen deliv-

ery by physiologic adjustment. That vascularization – necessary for the growth of

the primary tumor and for metastasis – is driven by hypoxia and mediated mainly by

activation of the hypoxia inducible transcription factors (HIFs) and expression of

their target genes, e.g. vascular endothelial growth factor (VEGF) is relatively well

understood. However, even though recruitment of blood and lymphatic vessels by

secretion of pro-angiogenic factors enables migration of tumor cells from the

primary tumor to distant metastatic sites, it does not provide a full explanation for

why tumor hypoxia is a hallmark of increased malignant progression and dimin-

ished therapeutic response (Tatum et al. 2006). For example, in breast cancer,

hypoxia is one of the most significant indicators of poor clinical outcome (Vaupel

et al. 2002, 2005; Chaudary and Hill 2006).

2.1 Hypoxia Inducible Factor Expression in Breast Cancer
Is Highly Correlated with Metastasis and Mortality

The members of the hypoxia inducible factor (HIF) transcription factor family are

key mediators of adaptation to hypoxia, and are responsible for many of the features

of hypoxia-driven tumor growth, especially with regard to angiogenic drive and

metabolic adaptation. Increased HIF-1a expression is also closely linked to meta-

stasis and poor prognosis in both hereditary and sporadic breast cancers (Bos et al.

2001, 2003; Schindl et al. 2002; Gruber et al. 2004; Dales et al. 2005; Generali et al.

2006; van der Groep et al. 2008). One of the first clinical studies of HIF-1a and
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breast cancer was carried out by Zhong et al., who reported that HIF-1a protein

detected by immunohistochemistry is often highly expressed in breast tumors,

as well as bordering “normal” areas adjacent to tumors (Zhong et al. 1999).

A subsequent study by Bos et al. followed, which correlated the levels of HIF-1a
over-expression with other prognostic factors of breast tumors, including prolifera-

tion rates, VEGF expression, microvessel density (MVD), expression of estrogen

receptor (ER), and p53 expression (Bos et al. 2001). In line with the findings of

Zhong et al., a majority of well-differentiated as well as poorly differentiated ductal

carcinoma in situ (DCIS) tumors over-expressed HIF-1a, whereas HIF-1a was

expressed in less than 1% of the normal breast epithelium, and was not detectable

in normal nonepithelial breast tissue or ductal hyperplasias (Bos et al. 2001). HIF-

1a over-expression was also noted in all tumors classified as poorly differentiated

invasive carcinomas. Moreover, in DCIS lesions, HIF-1a over-expression was

clearly associated with increased vessel density. Increased levels of HIF-1a protein
were also associated with high levels of proliferation and increased expression of

VEGF and ER in all breast tumor types (Bos et al. 2004). Furthermore, the C1772T

polymorphism in the HIF-1a gene has been shown to increase the risk of developing
breast cancer, nodal metastasis, and correlates with expression of HIF-1a in tumors

(Kim et al. 2008; Naidu et al. 2009).

Overexpression of HIF-1 is clearly clinically relevant to survivability of breast

cancer. It has now been shown in at least six studies of patient breast cancer biopsies

that increased expression of HIF-1a is highly correlated with increased mortality

and metastasis (Schindl et al. 2002; Bos et al. 2004; Currie et al. 2004; Gruber et al.

2004; Dales et al. 2005; Gao and Vande Woude 2005). This is true in both lymph

node negative and lymph node positive primary breast tumors. Indeed, one study

suggested that HIF-1a expression may be one of the best histological markers

available for determination of poor prognosis (Dales et al. 2005).

3 The Metastatic Role of HIFs in Breast Cancer

3.1 Mammary Specific HIF Deletion in a Murine Model
of Breast Cancer

In a mouse model of mammary carcinoma, deletion of HIF-1a in the mammary

epithelium led to reduced tumor growth as well as decreased pulmonary metastasis

(Liao et al. 2007). In addition, HIF-1 knock out MECs (mammary epithelial cells)

show reduced proliferation, migration and invasion under hypoxia in vitro (Liao

et al. 2007). Intense efforts are being made to identify molecular targets that

mediate the pro-metastatic role of HIF, and there is emerging evidence that HIF

expression directly promotes key factors for invasiveness, motility, and homing of

the tumor cell to the metastatic niche.
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3.2 Regulation of HIF Protein Levels Under Hypoxia

The HIF complex consists of one constitutively active b subunit and one of the

hypoxia sensitive a subunits (1a or 2a) (Wang et al. 1995). Activation of HIF to a

fully competent transcriptional regulatory protein complex is a multi-step process

(Ruas and Poellinger 2005) that include protein stabilization and transactivation. At

normal oxygen concentrations, HIF-a interacts with the ubiquitin protein ligase

pVHL, promoting HIF-a degradation by the proteasome (Maxwell et al. 1999;

Tanimoto et al. 2000). The interaction between pVHL and HIF-a is dependent

on hydroxylation of two conserved proline residues (Ivan et al. 2001; Jaakkola

et al. 2001). Hydroxylation is mediated by a family of prolyl hydroxylases

(PHD) (Bruick and McKnight 2001; Epstein et al. 2001) which utilizes oxygen

and 2-oxo-glutarate as substrates and generates CO2 and succinate as by-products

(Pan et al. 2007). Under hypoxic conditions, hydroxylation and the subsequent

degradation are inhibited, resulting in accumulation of HIF-a protein. In addition to
the protein stability, the transactivation capacity of HIF-a is regulated by factor

inhibiting HIF (FIH) through hydroxylation of an asparagine residue within the

transactivation domain (Mahon et al. 2001).

The notion that HIF activity is closely linked to poor prognosis in breast cancer

is supported by the recent results by Yan et al., showing that in aggressive familial

breast cancers linked to BRCA1 mutation there is suppressed expression of PHDs

and atypical localization of FIH (Yan et al. 2009), the two negative regulators of

HIF. In addition to low oxygen availability, alterations in abundance and activity of

PHDs modulate HIF actions both in vivo and in vitro (Pan et al. 2007; Aragones

et al. 2008; Tennant et al. 2009). The tricarboxylic acid (TCA) cycle metabolite

succinate is a potent inhibitor of PHD activity. Succinate accumulates and translo-

cates from the mitochondria to the cytoplasm when the TCA enzyme succinate

dehydrogenase (SDH) is inhibited. Reduced SDH activity has been shown in cells

from human mammary carcinomas (Putignani et al. 2008) and accumulation of

succinate has been shown to modulate HIF activity through downregulation of PHD

activity (Selak et al. 2005). This links the metabolic perturburation primarily caused

by HIF in cancer cells to a further activation of the HIF system. Furthermore,

cytoplasmic FIH expression correlates to poor prognosis in invasive breast cancer

(Tan et al. 2007). Taken together these results indicate that moderation of the HIF

regulatory system may contribute to the hypoxic phenotype and aggressiveness of

certain breast cancers.

3.3 Differential and Overlapping Features of HIF-1 and HIF-2

HIF-1 and HIF-2 regulate similar sets of genes, however, much data argue that HIF-1

is expressed in most tissues and transiently activated in response to hypoxia, while

HIF-2 is expressed in distinct cell populations and responds to less severe and

chronic hypoxic exposure (Poellinger and Johnson 2004; Holmquist-Mengelbier
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et al. 2006). Studies have shown that in the context of loss of HIF degradation,

HIF-2a becomes the dominant HIF-a isoform (Rankin et al. 2008). Like HIF-1a,
HIF-2a is overexpressed in a number of human cancers. In VHL deficient renal

carcinomas, HIF-2a seems to be largely responsible for tumor progression, for

review see Qing and Simon (2009). In human breast carcinomas, HIF-2a expression
correlates to metastatic ability (Giatromanolaki et al. 2006).

3.4 HIF Regulated Angiogenic Factors and Metastasis

HIFs are key mediators of angiogenesis. HIF-1 and HIF-2 regulate the expression of

an orchestra of pro-angiogenic factors such as VEGF, VEGFR1, angiopoietin and

erythropoietin (Semenza 2003). The excess of pro-angiogenic signaling leads

to vascular abnormality. The leaky, tortuous vessels in growing solid tumors lead

to poor perfusion, an increase in hypoxic area and may facilitate intravasation

of tumor cells (Jain 2005). Modulation of pro-angiogenic stimuli can normalize

the vasculature (Jain 2005; Dickson et al. 2007; Stockmann et al. 2008; Heath and

Bicknell 2009; Hedlund et al. 2009; Mazzone et al. 2009) and possibly reduce

metastasis (Mazzone et al. 2009).

There is further evidence that the characteristic of the vascular microenviron-

ment is an important factor for tumor cell function/invasiveness. Depletion of

HIF-1a in transformed astrocytes led to reduced growth and angiogenesis compared

to controls when injected subcutaneously, where there is low inherent vasculature

(Blouw et al. 2003). In contrast, when the HIF-1a depleted cells were introduced to
the highly vasculated brain parenchyma, tumors grew faster and spread to both

hemispheres more rapidly than control cells (Blouw et al. 2003). These results

indicate that HIF-1a-deficient astrocytomas were unable to induce neo-angiogenesis,

but adapted to the milieu and became more motile and invasive, moving along the

existing vasculature.

VEGF per se may induce invasion: in a study by Cannito et al., incubation of a

breast cancer cell line with VEGF-containing media, as well as media from hypoxic

exposure of the same cell line, both induced invasion as measured by a matrigel/

Boyden assay (Cannito et al. 2008). The results indicate an auto/paracrine effect

of VEGF on breast cancer cell invasiveness. Similar results have been obtained

in models of pancreatic and prostate cancer (Gonzalez-Moreno et al. 2010; Yang

et al. 2006), where VEGF-stimulated cells acquire epithelial to mesenchymal

transition (EMT) features along with increases in motility and invasiveness.

These studies describe a nonangiogenic effect of VEGF that may play a role in

early tumor spreading.

VEGF may also indirectly promote metastasis by its ability to induce actin

rearrangement in endothelial cells and increase vascular permeability. This will

supposedly facilitate metastasis in two ways, by causing gaps between endothelial

cells and thereby aiding intravasation of tumor cells, and also by altering the

interstitial fluid pressure. Tumors with high interstitial fluid pressure have been
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associated with increased metastasis and lower disease free survival (Milosevic

et al. 2001; Rofstad et al. 2002).

Furthermore, VEGF is also involved in formation of the premetastatic niche by

recruitment of VEGFR1 positive myeloid cells to the premetastatic site (Kaplan

et al. 2005), this finding has, however, been challenged by recent results (Dawson

et al. 2009) where blocking of VEGFR1 did not decrease metastatic burden.

3.5 A Link Between Tumor Metabolism/Acidosis and Metastasis

A common feature of hypoxic cells is that they depend on anaerobic metabolism for

their ATP production. This is called the Pasteur effect and is mediated by HIF-1

(Seagroves et al. 2001). This enhanced glycolysis will lead to an increase in lactate

production and acidosis. Acidosis per se is known to promote tumor cell invasion

by destruction of adjacent tissue and degradation of the extracellular matrix (ECM)

(Martinez-Zaguilan et al. 1996). In addition, acidosis can reduce the effect of cancer

drugs that work optimally only under normal pH.

Intracellular lactate needs to be extruded to allow for sustained glycolysis

and ATP production. Lactate is cleared by export to the ECM by H+/lactate

co-transporters such as the HIF-regulated monocarboxylate transporter 4 (MCT4)

(Ullah et al. 2006). Excess lactate can be oxidized in better-oxygenated tumor cells

(Sonveaux 2008) as well as in stromal cells (Koukourakis et al. 2006). In addition to

lactate production, the high overall metabolic rate in tumors produces significant

amounts of CO2 that further contribute to acidosis. The enzyme carbonic anhydrase

IX (CAIX) is located in the plasma membrane and converts CO2 and water to

HCO�
3 and H+. HCO�

3 re-enters the cell and aid in intracellular alkalinization. As a

result, despite the high rate of anaerobic metabolism, the intracellular pH of tumors

are kept in the physiological range of 7.0–7.4, while the extracellular pH can be as

low as 6.0–7.0 (Vaupel et al. 1990). HIF-1 is responsible for regulation of CAIX

expression and CAIX has been widely used as a marker of hypoxia.

CAIX overexpression has been shown in a number of tumors, such as cervix,

breast, and lung carcinomas and is related to prognosis, both linked to HIF-1 and

independently (Giatromanolaki et al. 2001; Bartosova et al. 2002). In a study by

Chia et al., CAIX was associated with negative ER status, higher relapse rate and

worse overall survival in breast cancer patients (Chia et al. 2001).

3.5.1 Therapeutic Targets of Metabolic Disease in Breast Cancer Progression

Glucose dependent metabolism has been considered a possible target for cancer

therapy in combination with conventional treatment, since it targets cells highly

resistant to chemo- and radiotherapy (Scatena et al. 2008). Use of the metabolic

drug metformin in diabetic patients decreases breast cancer incidence and mortality

(Evans et al. 2005; Jiralerspong et al. 2009) and the AMP analog AICAR that
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mimics low energy status in the cell has been shown to reduce growth and invasion

in a breast cancer model (Swinnen et al. 2005).

Mechanistically, both Metformin and AICAR induce AMPK activity. AMPK

activation per se can induce cell cycle arrest, downregulate mTOR activity and

reduce HER-2 expression (Dowling et al. 2007; Zhuang and Miskimins 2008; Liu

et al. 2009; Oliveras-Ferraros et al. 2009; Phoenix et al. 2009; Vazquez-Martin et al.

2009). Systemically, AMPK activation increases glucose metabolism and reduces

circulating insulin and IGF-1 levels in patients with hyperinsulinemia. Treatment

with Metformin and AICAR have been shown to reduce blood insulin levels also in

breast cancer patients and many breast cancers express insulin receptors as well as

receptors for IGF-1 (Goodwin et al. 2008). In addition to their mitogenic effect as

growth factors, insulin and IGF-1 have been shown to induce HIF activity (Zelzer

et al. 1998). Treating epithelial cells with AICAR or metformin inhibits the ability

of insulin and IGF-1 to induce HIF-1a expression (Treins et al. 2006).

In line with this, both Metformin and AICAR reduce HIF-1 activity in epithelial

cells (Treins et al. 2006). This may occur through the inhibitory effect of AMPK on

mTOR, since mTOR and the PI3K/Akt pathway are involved in regulation of HIF

in breast cancer cells (Blancher et al. 2001). Taken together, reduced HIF activity

may contribute to the beneficial effects of metformin in treatment of breast cancer,

as hinted at in Shackelford et al. (2009).

However, AMPK activation is capable of inducing HIF-1-independent VEGF

production (Yun et al. 2005). This introduces a possible negative effect of met-

formin treatment that is supported by the recent reports where metformin appear

to increase VEGF expression and induce angiogenesis in a breast cancer model

(Phoenix et al. 2009).

3.6 Motility and the Stroma

3.6.1 The Invasiveness of a Tumor Cell Depends on Its Ability

to Migrate Through the Stroma

The invasiveness of a tumor cell depends on its ability to migrate through

the stroma, but also on breakdown of the ECM and entry into the vasculature.

The migratory phenotype requires changes in src, rac-1, Rho activation. Loss

of HIF-1 in MECs reduces directed motility as well as invasion under hypoxia

(Liao et al. 2007). Several HIF target genes have been shown to contribute to

this phenotype.

The hepatocyte growth factor (HGF) pathway is associated with proliferation,

motility, invasion and angiogenesis in breast cancer and enhances the transition

from DCIS to invasive carcinoma (Gao and Vande Woude 2005; Jedeszko et al.

2009). HGF is expressed by fibroblasts in the tumor stroma and secreted as a

precursor form (proHGF). It is then converted to active HGF by the proteinase

hepatocyte growth factor activator (HGFA) and act through its receptor c-MET
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(Hanna et al. 2009). c-MET is overexpressed on aggressive forms of breast cancer

and associated with invasion and metastasis (Lee et al. 2005). Expression and

activation of c-MET has been correlated to tumor hypoxia and is promoted by

HIF-1 (Pennacchietti et al. 2003; Chen et al. 2007). In addition to regulating

the expression of c-MET, HIF-1 has also been suggested to induce expression of

HGFA in tumor cells and thereby increase the bioavailable levels of HGF in the

stroma and further activate c-MET signaling (Kitajima et al. 2008) and metastatic

potential.

Macrophage-stimulating protein (MSP) is a HGF homologue that promotes

metastasis in animal models (Zinser et al. 2006). It is the only known ligand of

Recepteur d’origine nantais (RON), a predictor of metastasis and low survival in

breast cancer patients (Lee et al. 2005). RON was recently shown to be a direct

target of HIF-1 (Thangasamy et al. 2009).

A transient hypoxia exposure prior to intravenous injection increases the meta-

static potential of several cancer cell lines (Young et al. 1988; Young and Hill

1990), indicating that hypoxic exposure also contributes to cancer cell extravasa-

tion and settlement. The HIF-1 regulated chemokine receptor CXCR4 (Schioppa

et al. 2003; Staller et al. 2003) is highly prevalent on breast cancer cells and

responsible for cell migration but also recruitment of tumor cells to the premeta-

static niche (Muller et al. 2001). Its ligand, stromal derived factor-1 (SDF-1/

CXCL12), is expressed by cancer cells, normal MECs, and fibroblasts in the

tumor stroma (Orimo et al. 2005; Du et al. 2008; Serrati et al. 2008). In a

glioblastoma model, it was shown that hypoxia and HIF-1 induced tumor cell

expression of SDF-1 and increased recruitment of CXCR4 positive BMDCs to

the tumor stroma (Du et al. 2008). HIF-1 mediated expression of SDF-1 has also

been reported in inflammatory fibroblasts and led to infiltration of myeloid cells (del

Rey et al. 2009). The recruitment of BMDCs is important for vascularization of the

primary tumor (Du et al. 2008) but may also play a role in the formation of

metastases. Recently, Dunn et al., showed that high levels of TGF and HIF-1 in

the bone microenvironment up-regulate local CXCR4 and VEGF expression and

promote metastasis (Dunn et al. 2009).

Recently, another chemokine, CXCR6, was shown to be regulated by HIF-1

and induce migration in breast cancer cells. CXCR6 is highly expressed in breast

cancer cells in vitro and in metastatic lymph nodes, but not to the same extent in the

primary tumor (Lin et al. 2009). The authors show a chemotactic effect of the ligand

CXCL16 on CXCR6 positive breast cancer cells and suggest it as a possible way to

recruit tumor cells to the lymph nodes that are known to express the CXCL16.

When screening for genes associated with hypoxia in transformed cells, the

amine oxidase LOX was identified (Denko et al. 2003). LOX was previously known

to crosslink collagens and elastins in the ECM but had also been associated with

increased breast cancer cell invasion in vitro (Kirschmann et al. 2002). Erler et al.,

showed that high expression of LOX is correlated with poor prognosis in ER

negative breast cancer patients (Erler et al. 2006) and in the same publication they

show that LOX has an HRE in its promoter region and is regulated by HIF-1.

Inhibition of LOX reduces hypoxia induced cancer cell motility and invasiveness
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and prevents metastasis in vivo (Erler et al. 2006). The molecular mechanisms

behind the metastatic potential of LOX include activation of focal adhesion

kinase activity (Erler et al. 2006), stabilization of SNAIL (Sahlgren et al. 2008)

and downregulation of E-cadherin and induction of EMT (Schietke et al. 2010).

Furthermore, secreted LOX has been shown to accumulate at premetastatic sites

and initiate formation of the premetastatic niche by crosslinking collagen IV and

thereby induce recruitment of first myeloid cells and then bone marrow-derived

cells and tumor cells (Erler et al. 2009). It was recently shown that inhibitors of

LOX have no effect on already established metastasis, supporting the notion that

LOX activity is important primarily in the early metastatic process (Bondareva

et al. 2009).

3.6.2 Epithelial to Mesenchymal Transition

Oxygen availability also regulates EMT, a dedifferentiation process where the

tumor cells lose expression of cell adhesion molecules such as E-cadherin, and

tight epithelial cell–cell contacts are dissolved. The cell acquires a spindle-like,

mesenchymal, migratory phenotype and becomes increasingly independent of

ECM and stromal cells for survival (Thiery 2002; Grunert et al. 2003) leading to

enhanced invasion and metastasis. Although EMT is induced by a number of

stimuli such as HGF, TGFb, FGF, PDGF and Wnt ligands, it is now widely

accepted that hypoxia alone can induce EMT and a consequent increase in inva-

siveness also in breast cancer cells (Lester et al. 2007; Cannito et al. 2008).

E-cadherin is one of the main adhesion molecules in the epithelium and loss of

e-cadherin is regarded as a central event in metastasis, and is closely linked to

hypoxia and HIF expression (Esteban et al. 2006). Inhibition of E-cadherin in vitro

leads to increased invasiveness, and over-expression of E-cadherin in already

invasive cells can reduce invasiveness (Hanahan and Weinberg 2000). Multiple

mechanisms contribute to the inactivation of E-cadherin, including promoter

methylation, phosphorylation, and transcriptional repression.

HIF-1 regulates several transcription factors/repressors involved in EMT; e.g.,

SNAIL, SLUG, TWIST, and ZEB1 (for review see Haase 2009). These factors

regulate migration and invasion in hypoxic breast cancer cells, partly by repressing

E-cadherin expression through interaction with e-boxes located in the proximal

promoter of E-cadherin (Chen et al. 2010; Yang et al. 2004; Eger et al. 2005;

Alexander et al. 2006).

In addition to losing adhesion molecules, cancer cells that undergo EMT

also acquire new ways to physically interact with the microenvironment. Loss of

E-cadherin is often accompanied with activation of mesenchymal markers, e.g.,

N-cadherin and vimentin. In melanoma, this cadherin switch can be a direct

effect, as shown by Kuphal et al., where expression of the intracellular domain

of E-cadherin was sufficient to down-regulate N-cadherin expression and inva-

siveness, possibly mediated by another hypoxia-sensitive transcription factor,
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NFkB (Kuphal and Bosserhoff 2006). In addition, the HIF regulated factor TWIST

can down-regulate E-cadherin but also activate N-cadherin (Yang et al. 2004).

Transfection of N-cadherin to a weakly metastatic breast cancer cell line promoted

motility, invasion, and metastasis (Hazan et al. 2000). Cadherins usually form

homotypic aggregation, but N-cadherin can also form heterotypic adhesions to

other cell types in the stroma, such as endothelial cells and fibroblasts (Li et al.

2001). The HIF-1 regulated a5b1 integrin is expressed in breast cancer cells in

response to hypoxia and provides adhesion to fibronectin and laminin; binding

promotes cell survival and mobility through ECM and on a fibroblasts layer

(Spangenberg 2006). a5b1 ligation has also been linked to survival of metastatic

breast cancer cells in bone marrow metastasis (Korah et al. 2004).

Some HIF-1 regulated metabolic genes are also involved in promoting motility.

For example, MCT4 interacts with b1 integrins in lammelapodia inducing migra-

tory ability (Gallagher et al. 2009) and phosphoglucose isomerase (PGI, aka auto-

crine motility factor, or AMF) is known to stimulate cell motility (Niizeki et al.

2002; Funasaka et al. 2005). Recent evidence also showed that overexpression of

PGI can lead to EMT in breast cancer cells (Funasaka et al. 2009). This is supported

by the results of Tsutsumi et al., showing that AMF can induce SNAIL and reduce

E-cadherin expression (Tsutsumi et al. 2004).

3.6.3 Stromal Interaction and ECM Degradation

Acquisition of the ability to break down the ECM and basement membrane sur-

rounding the primary tumor is part of the cancer cells path to becoming invasive, and

also seems to be an important trait for extravasation and metastasis formation. HIFs

are part of this path, and can activate proteolytic enzymes such as MMP-2, MMP-9,

MMP-14, and Cathepsin D, either directly or indirectly (Petrella et al. 2005; Huang

et al. 2009; Jo et al. 2009; Song et al. 2009). These enzymes have no proven effect on

migratory ability, but alter the vascular architecture (Chabottaux et al. 2009) and aid

invasiveness and settlement in the metastatic tissue (Rizki et al. 2008; Huang et al.

2009).

The tumor associated proteolytic factor uPA/uPAR was early on shown to be

regulated by hypoxia and important for invasion (Graham et al. 1998, 1999;

Kroon et al. 2000; Maity and Solomon 2000). The uPA becomes active when

bound to the HIF regulated receptor uPAR, the complex then converts plasmin-

ogen into plasmin (Graham et al. 1998; Buchler et al. 2009). Plasmin contributes

to proteolytic activity both by direct degradation of ECM proteins and by

activating MMPs. Several studies have found that high levels of the uPA system

is associated with tumor aggressiveness and poor prognosis in breast cancer

(Harbeck et al. 2007). Interestingly, the expression is equally predictive coming

from tumor cells as well as the tumor stroma (Hildenbrand and Schaaf 2009).

Recent findings also indicate that uPAR may contribute to EMT in cancer cells

(Jo et al. 2009).
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4 Alternative Regulation of HIF

4.1 Oncogene Signaling Alters HIF Activity

In addition to hypoxia, deregulation of oncogenes and tumor supressor genes

can alter HIF activity, primarily through the PI3K/Akt, mTOR, NFkB and Notch

signaling pathways. For example, HER-2/neu overexpression leads to increased

HIF-1 stability through mTOR (Semenza 2003). Notch signaling has been shown

to mediate hypoxic activation of EMT and directly upregulate Snail1 and Slug

(Leong et al. 2007; Sahlgren et al. 2008) but with HIF-1a as part of the transcrip-

tional complex. Inhibition of Notch in this model prevented E-cadherin down-

regulation and conserved the epithelial morphology under hypoxia. In addition,

Notch activation augmented HIF-1 recruitment to the LOX promoter, LOX mRNA

expression and the subsequent increase in protein levels of Snail1 under hypoxic

conditions (Sahlgren et al. 2008). Recently, it has been shown that HIF potentiated

Notch signaling and downstream e-cadherin repression in breast cancer cell lines

(Chen et al. 2010).

NFkB-HIF-1 interaction has been shown to contribute to EMT and breast cancer

metastatic capacity (Bendinelli et al. 2009). Functional NFkB is also necessary

for HIF-1a mRNA expression in macrophages and fibroblasts (Belaiba et al. 2007;

Rius et al. 2008), the two most prominent cell types of the tumor stroma. Both

macrophages and fibroblasts significantly contribute to breast cancer metastasis

(Lin et al. 2001; Liao et al. 2009) and, as previously mentioned, macrophage

infiltration correlates to poor prognosis in breast cancer (Leek et al. 1996; Tsutsui

et al. 2005).

4.2 Dual Roles of Nitric Oxide in Tumor Progression

Nitric oxide has been shown to have both tumor promoting roles such as increased

vascular permeability, blood flow, MMP expression and angiogenesis, but also anti-

tumor roles such as induced tumor cell death. NO is one of the key signaling

molecules in inflammation and it modulates HIF-1 activity in normoxia as well as

hypoxia (for a review see Berchner-Pfannschmidt et al. 2010). Macrophage derived

NO has been suggested to kill tumor cells by apoptosis, but with a subsequent shift

in macrophage phenotype towards the M2 polarization state, reviewed in Weigert

and Brune (2008). One characteristic of M2 macrophages is upregulated arginase

expression and activity. Arginase competes with iNOS for their common substrate

i-arginine and in contrast to M1 polarized macrophages, M2 polarized macrophages

produce low levels of NO upon stimulation (Rauh et al. 2005). It has recently been

shown that the HIF-1/HIF-2 balance is part of the divergence in NO production

between M1 and M2, where M2 macrophages primarily express HIF-2a (Takeda

et al. 2010). In the study by Takeda et al., HIF-2 induces arginase production while
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M1macrophages have a HIF-1 profile that increase iNOS expression. Expression of

iNOS in tumor cells is associated with apoptosis, suppression of tumorigenicity,

abrogation of metastasis and regression of established hepatic metastases (see the

review by Lechner et al. (2005) and Tatemichi et al. (2009)). In addition, macro-

phage NO production in tumors has been shown to have a cytotoxic and cytostatic

effect (Hibbs et al. 1987; Xie et al. 1996). Together these data suggests that reduced

NO production may be part of how tumor associated macrophages facilitate tumor

progression.

4.3 Deacetylation Inhibitors in HIF Regulation

A recent study indicates a possible modulation of NFkB and HIF-1 activity in breast

cancer cells by histone deacetylases (HDACs) (Bendinelli et al. 2009). HDACs

regulate transcriptional activity by removing lysine bound acetyl groups. For

example, they repress transcription by deacetylation of histone tails and thereby

increase histone tail affinity to DNA and induce gene silencing. HDAC expression

and activity has been shown to increase in response to hypoxia (Kim et al. 2001).

Activation of HDAC1 is associated with an angiogenic profile in several cell types,

and has been shown to down-regulate pVHL expression but increase the expression

of HIF-1a and VEGF (Kim et al. 2001). Global inhibition of deacetylases results in

apoptosis of cancer cells and reduced tumor growth, and several HDAC inhibitors

are currently being tested in clinical trials (for a review see Mottet and Castronovo

(2008)). A decrease in HIF-1a levels was recently suggested as the main explana-

tion for reduced formation of metastatic lung lesions by the HDAC inhibitor AN-7

in a breast carcinoma model (Tarasenko et al. 2008).

5 Concluding Remarks

Tumor cells are educated in the hypoxic environment of the primary tumor and

there gain features necessary for the malignant progression and establishment of

metastatic tumors. How hypoxia impacts this process across the wide range of cells

involved in tumorigenesis is a key question that remains to be answered. It is also a

question that requires the synthesis of a great deal of data studying the individual

influence of the hypoxic response in each cell type. Interestingly, data indicate that

the process of breast cancer metastasis, and metastasis generally, is impacted by

hypoxic response in all of the cell types involved in the metastatic process, e.g.,

malignant cells, endothelial cells, inflammatory cells and mesenchymal cell types.

Although synthesizing a complete picture of the role of hypoxic response in the

metastatic process will involve studying all of these, this should allow important

targets for interrupting metastasis to be discovered and evaluated.
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